SERVICE MANUAL

Scanned and converted to PDF by HansO, 2003
Original supplied by David J Haslett

TABLE OF CONTENTS

1. OPERATION

1-1. FEATURES . 1 1-1

1-2. SPECIFICATIONS
1-3. LOCATION AND FUNCCTION OF PARTS AND

1-5. KEYBOARD OPERATION 1-4
1-6. HOW TO START UP 1-6
1-7. TO SAVE AND LOAD A MSX-BASIC PROGRAM ... 1-6
1-8. MEMORY MAP 1-6
REFERENCE CHART (MSX-BASIC) 1 -

2. SERVICE INFORMATION

2-1.	DISASSEMBLY	2-1
2-1-1.	Disassembly of Cabinet (upper)	2-1
2-1-2.	Disassembly of MAIN Board	2-1
2-1-3.	Disassembly of Keyboard	2-2
2-2.	PROVIDING OF BASIC ROM AND	
	ROM	2-2
2-2-1.	Basic ROM (IC42, 43)	2-2
2-2-2.	Firmware ROM (IC44)	2-2
2-3.	REPAIR PARTS	2

3. THEORY OF OPERATION

3-1. Z80 (CPU)		
3-1-1	1. Function of Pins	3-1
3-1-2	2. Operation of Z80	3-1
3-1-3	3. M1 Cycle	3-2
3-1-4	4. Refresh Cycle	2
3-2. OPERATION WHEN POWER SUPPLY IS		
	TURNED ON	3-3
3-3.	CHECKING SLOT	3-4
3-4.	I/O PORT	3-6
3-4-1	1. Selection of I/O Port	3-6
3-4-2	. Operation of Each Port	3-6
3-5. ACCESS TO MAIN RAM (HB-55P)		
3-5-1	1. When Data is Read Out from RAM (HB-55P)	3-7
3-5-2	. When Data is Written into RAM (HB-55P)	-7
3-5-3	. Dynamic RAM (4116) ($\mathrm{HB}-55 \mathrm{P}$)	3-7
	ACCESS TO MAIN RAM ($\mathrm{HB}-75 \mathrm{P} / 75 \mathrm{~B}$)	3-8
3-5-1	When Data is Read Out from RAM (HB-75P/75B)	
3-5-2	2. When Data is Written into RAM (HB-75P/75B)	3-8
3-5-3	. Dynamic RAM (3764) ($\mathrm{HB}-75 \mathrm{P} / 75 \mathrm{~B}$)	3-8
3-5-4	. Read Cycle Procedure	3-9
3-6.	PRINTER	3-10
	PROGRAMMABLE PERIPHERAL INTERFACE (PPI) IC16	3-11
	PROGRAMMABLE SOUND GENERATOR(PSG) IC48	$3-12$
3-8-1.	. I/O Port of PSG (IC48)	3-13
	VIDEO DISPLAY PROCESSOR(VDP) IC6	3-14
3-9-1.	. VRAM Mapping	3-14
3-9-2.	. VDP Register	3-16
3-9-3.	. VDP Status Register (for reading out only)	3-19
3-9-4.	. Reset of VDP Statns Register	3-19
3-9-5.	. Writting In to the VDP Register	3-19
3-9-6.	Writting in to VRAM	3-19
3-9-7.	. Reading Out of Status Register	3-19
3-9-8.	. Reading Out from the VRAM	3-19
3-9-9.	. Display Limitation of Sprite	3-20

4. BLOCK DIAGRAM

OVERALL . 4-1
5. SCHEMATIC DIAGRAM AND PRINTED CIRCUIT BOARD

A ASSIGNMENTS	5-1
MAIN BOARD	5-14
FUSE, LED, POWER, TRANS, 5V, 12 V BOARD	$5 \cdot 23$
KEYBOARD (HB-55P)	5-25
KEYBOARD (HB-75P/75B)	5-28

6. ALIGNMENT

6-1. HB-55P/75P/75B ADJUSTMENT 6-1
6-1-1. VCO Phase Adjustment 6-1
6-1-2. SUB Carrier Frequency Adjustment 6-1
6-1-3. Video Output Level Adjustment 6-1
6-2. HB-75P/75B RGB ADJUSTMENT 6-2
6-2-1. Blue Output Level Adjustment 6-2
6-2-2. Red Output Level Adjustment 6-2
6-2-3. Green Output Level Adjustment 6-2
7. REPAIR PARTS AND FIXTURE

7-1. EXPLODED VIEW 7-1
MAIN ASSEMBLY (HB-55P) 7-1
MAIN ASSEMBLY (HB-75P/75B) 7-3
KEYBOARD (HB-55P)
KEYBOARD (HB-75P/75B) 7-7
7-2. ELECTRICAL PARTS LIST 7-9
7-3. PACKING MATERIAL AND ACCESSORY 7-16

CHAPTER 1

OPERATION

1-1. FEATURES

Possible to connect any monitor TV
The HB-55P/75P/75B has an RF connector and a 6-pin DIN-type VIDEOIAUDIO connector for videolaudio output. In addition to this, the HB-75P/75B has an analog RGB connector, so that any type of monitor TV can be connected to the computer.

Various graphic patterns and characters input
Combinations of normal alphanumeric keys and control keys allow you to easily input up to 252 kinds of characters, symbols and graphic patterns from the keyboard.

Built-in MSX-BASIC

The built-in MSX-BASIC has 119 commands which allow you easy program development. With the MSX-BASIC sprite function, you can make
and move the different patterns on each of the 32 sprite planes.
The sound generator makes it possible to output three tones and one noise simultaneously, so that you can generate various effect sound or music by using the PLAY and SOUND command of the MSX-BASIC Two supplied manuals for the MSX-BASIC will tell you not only how to use the MSX-BASIC but also the pleasure of programming.

Easy-to-use Personal Data Bank
The Personal Data Bank, which is the other built-in software, makes it easy to handle personal data such as addresses, phone numbers, and so on. Convenient to use, you are sure to find many uses for it.

Various peripherals for the HB-55P/75P/75B
Various peripherals can be connected: MSX-BASIC program and data and the Personal Data Bank data can be saved on an audio cassette tape, a data cartridge, or a micro floppydisk. To print out data or graphics, the color plotter printer is useful. When playing a computer game, you can use up to two joystick controllers to make the game more exciting.

Device name	Major features
HBD-50 Micro Floppydisk Drive	- High-density information storage - Easy-to-operate - Fast recall of data
JS. 55 Joystick	- Designed for left or right handed players - Shoot buttons on both left and right
JS. 75 Wireless Joystick	- No cords to get tangled - Can be operated from up to 7 meters away
TCM-3000D Datacorder	- Easy to operate with any computer - Hign-speed data transter
PRN.CA1 Color Plotter Printer	- Four-color printer: black, blue, green and red - Light weight and compact - Can use any paper up to 114 mm in width

1-2. SPECIFICATIONS

CPU

Processor used
Clock frequency
WAIT
Interrupt
3.579545 MHz

Interrupt	Maskable interrupt Z-80A mode 0 mode 1 mode 2
	Automatic at power on/Manual (Memory contents are not saved.)
Resetting	
Memory	
Main memory	HB-55P
	16 K bytes RAM
	Expansion is possible up to 32 K bytes or
	64 K bytes with Sony Expansion Memory
	Cartridge HBM-16/HBM-64.
	HB-75P/75B
	64 K bytes RAM
ROM	48K bytes
	MSX-BASIC: 32 K bytes
	Utility Program: 16 K bytes

CRT display	
CRT controller	TMS9929ANL
Display screen	Character display, graphic display and border area
Character display	8×8 dot matrix/character 37 characters $\times 24$ lines, 16 colors (max. 40×24) (The initial state in MSX-BASIC is set to this mode.)
Graphic display	16 colors
	Graphic I II
	Multi-color 64 blocks (horizontal) $\times 48$ blocks (vertical)
	Sprite function Number of sprite plane: 32
Border area	16-color display
Output interface	PAL video output: composite video signal 1 V p-p, 75 ohms, sync negative
	RGB video output: RGB analog signal, 0-0.7 V ,
	RF signal: TV UHF 36 ch
	Audio output: -5 dBs
I/O interface	
Keyboard	Software scanning
	Total number of keys: 73 (HB-55P)
	Control keys: $\begin{gathered}\text { (1) } \\ \text { (HB-55P) } \\ \text { (}\end{gathered}$
	Control keys:11 (HB-55P) 12 (HB-75P/75B)
	Function keys: 5
	Edit keys: 8
Audio cassette interface	
	8 -pin DIN jack
	Baud rate: 1200/2400 bauds
	Baud rate is selectable with the CSAVE command or the SCREEN command of MSX-BASIC.
	Remote control function provided
Sound generator	8 -octave, 3 tones and 1 noise output
Printer interface	14-pin connectorTTL level
	- Standard 8-bit parallel transfer
Joystick interface	9 -pin connector (2)
MSX cartridge slot (2)	
General	
Power requirement	HB-55P/75P
	220 V ac $\pm 10 \%, 50 / 60 \mathrm{~Hz}$
	HB-75B
	240 V ac $\pm 10 \%, 50 / 60 \mathrm{~Hz}$
Power consumption	24 W (main unit only)
Operating conditions	Temperature: $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right.$ to $95^{\circ} \mathrm{F}$)
	Humidity: 20 to 80\%
Storage temperature	$-15^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(5^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Dimensions	Approx. $405 \times 67 \times 245 \mathrm{~mm}(\mathrm{w} / \mathrm{h} / \mathrm{d})$ ($16 \times 2^{3 / 4} \times 9^{3 / 4}$ inches)
	main unit only, including projecting parts and controls
Weight	Approx. 3.5 kg (7 lb 12 oz)main unit only
Accessories supplied	75 -ohm coaxial cable (1)
	Cassette interface cable (1)
	Antenna selector (1)
	Receptacle for Cartridge slot B (1)
	Operating Instructions (1)
	How to use Personal Data Bank (1)
	Introduction to M ${ }^{\text {X }}$-BASIC (1)
	MSX-BASIC Programming Reference Manual
	(1)
	Graphic pattern sheet (1)
	Graphic pattern decal (only HB-75P/75B) (1)

While the information given is true at the time of printing, small production changes in the course of our company's policy of improvement through research and design might necessarily be indicated in the speifications. We would ask you to check with your appointed Sony dealer

1-3. LOCATION AND FUNCTION OF PARTS AND CONTROLS

Rear

(1) POWER switch and indicator

Press the switch to turn on the computer. To turn off, press the switch again. The indicator lights up while the power is on.
(2) Cartridge slot A

Cartridge slot A
3 RESET button
Press this button if there is a program overrun to reset the computer to Press this button if there is a program overrun to reset the computer to
the initial state. When the button is pressed, the built-in memory contents will be destroyed.
(4) CONTROLLER A and B connectors

Accepts joystick controllers. When using only one joystick controller connect it to the CONTROLLER A connector.
© Keyboard
Is used to input the program and the data into the computer.
© RF (RF output) connector
When using a normal TV receiver, connect this connector to the TV antenna terminal with a 75 -ohm coaxial cable.
(3) VIDEOIAUDIO (video/audio output) connector (6-pin DIN connector) Connect to the monitor TV with a 6 -pin DIN connector. This connector outputs both the video and the audio signals.
(Cartridge slot B
This slot can be used to insert a ROM cartridge or a RAM cartridge (an expansion memory cartridge, a game cartridge and so on) as the secondary slot. This slot is the same as cartridge slot A. Before using this slot, the receptacle should be installed.
(9) PRINTER connector (14-pin connector)

PRINTER connector (14-pin connector) with MSX specifications such as the Sony PRN-C41 color plotter printer.
(10) TAPE connector (8-pin DIN connector)

Connect to a cassette tape or to load them into the computer from a tape.
(1) RGB (RGB output) connector (21-pin connector) The HB-55P is not equipped with this connector.

1-4. CONNECTION

Make sure to turn off the computer and all the devices to be connected. INSTALLING THE RECEPTACLE FOR CARTRIDGE SLOT B

When cartridge slot B is to be used, install the receptacle supplied.

1. Loosen the two screws, and remove the slot cover

2. Fix the receptacle with screws.

CONNECTING A MONITOR TV

Connecting a normal TV receiver

1. Connect the TV antenna terminal to the supplied antenna selector

2. Connect a TV receiver to the computer

Notes

- Set the switch of the antenna selector to the COMPUTER position when using the computer; To watch TV, set it to the AERIAL position.
- Select the channel UHF 36 for the computer

Connecting a color monitor
Connect a color monitor having a 21 -pin analog RGB signal input.

CONNECTING A TAPE RECORDER AS AN EXTERNAL MEMORY

4inllin

TCM-3000D
Datacorder etc.
CONNECTING A PRINTER

CONNECTING A JOYSTICK CONTROLLER

1-5. KEYBOARD OPERATION

KEY ARRANGEMENT

Alphanumeric characters are arranged in the standard QWERTY type writer keyboard, as shown below.

In the HB-55P, the graphic patterns are printed on the keyboard, while in the HB-75P/75B, graphic pattern decal can be affixed to the keyboard

The supplied graphic pattern sheet is as follows:

(100) (19]	

To enter these patterns or characters.
The keyboard has character input, control, edit and function keys. When a character input key is pressed, the corresponding character is entere into the computer. When a control key is pressed, the corresponding operation is performed.
Character input keys: A to Z, 0 to $9,+$, ?, -, ", and so forth. Edit keys: [HOME INS TDEL,
Control keys: SHIIFT CAP CŌDE GRAPH CTRL, TAB STOP and SELECT

CHARACTER INPUT
To enter characters
When a character input key is pressed, the small letter or symbol printed on the lower part on the key top is entered

Pressed key	Character or symbol to be entered
t	t
6	6

When a character input key is pressed with the SHIFT key, the capita letter or symbol printed on the upper part of the key top is entered.

Pressed key	Character or symbol to be entered	
SHIFT + (${ }^{\text {a }}$	S	(HB-55P)
[SHIFT] $+ \pm \pm$	+	(HB-75P/75B)

To enter only capital letters
To enter theicap key. When this key is pressed, it will lock; when pressed Depres will unlock. While this key locks, the CAP indicatorlights up and the 26 alphabet letters are entered in caps (just as when the SHIFT key is pressed in the normal mode), but numbers and symbols are entered in the normal mode the normal mode

To put an accent mark on a character
Key is used to put an accent mark on a character
To put the accent mark printed on the lower-left of the key (${ }^{\prime}$) on a char acter, first, press key ... (in this step, no symbol is displayed on the screen) Then press the character input key needing an accent mark. The character with an accent mark is displayed.
In the same way, to put the accent mark on the upper-left of the key
('). press the key while pressing the SHIFT] key. To put the accent mark on the lower-right of the key $\left(^{*}\right.$), press the key together with the CODE key. To put the accent mark on the upper-right of the key ("), press the key while pressing the sHIFT, key and the CODE key.

$$
\text { This key + [SHIFT }]_{\text {key }}^{\text {This key + CODE key }+ \text { SHIFT }]^{\text {They }} \text {, This kev only }}
$$

To enter a character or symbol printed on the graphic pattern sheet The procedure to enter a character or symbol printed on the supplied graphic pattern sheet is as follows
To enter graphic patterns
To enter the graphic pattern printed on the lower-right part of the key on the graphic pattern sheet, press the corresponding keyboard character input key while pressing the GRAPH key

Pressed key	Graphic pattern to be entered	
[GRAPH] $+\because:$	4	(HB-55P)
GRAPH + Q	E	(HB-75P/75B)

To enter the graphic pattern printed on the upper-right part of the key on the graphic pattern sheet press the corresponding keyboard character input key white pressing the [GRAPH key and the [SHIFT] key.

Pressed key	Graphic pattern to be entered	
GRAPH + SHIFT +3	. 9	(HB-55P)
GRAPH + SHIFT + ?	\div	(HB-75P/75B)

To enter special characters
To enter the character or symbol printed on the lower-left part of the key on the graphic pattern sheet, press the corresponding keyboard char acter input key while pressing the CODE key

Pressed key	Character or symbol to be entered
CODE +0	0
CODE $+\mathbf{D}$	(HB-55P)
(HB-75P/75B)	

To enter the character or symbol printed on the upper-left part of the key on the graphic pattern sheet, press the corresponding keyboard character input key while pressing the CODE key and the [SHIFT] key

Pressed key	Character or symbol to be entered
$\begin{aligned} & \overline{\mathrm{CODE}}+\text { SHIFT }+\pi_{5} \\ & {[\mathrm{CODE}+\text { SHIFT }+\mathbf{N}} \end{aligned}$	$\begin{aligned} & \nexists \\ & \dot{N} \end{aligned}$

Notes

- When using the CODE key, release the [CAP lock state.

In the HB-75P/75B , graphic pattern decal, which can be affixed to the keyboard, is supplied

EDIT KEY FUNCTIONS
Keys [HOME, [INS, DEL, BS and cursor move keys ((i) editing a line or screen. Each function is determined by the software used, so read the relevant Software Guide for details. Under MSX-BASIC, the edit keys function as follows

HOME key
When this key is pressed, the cursor moves to the upper-left corner of the display screen. The characters displayed on the screen remain
When pressing this key together with the [SHIFT key, the cursor moves to the upper-left corner of the screen, while any character displayed on the screen is erased.

NS (insert) key

Once this key is pressed, the computer is set to the insert mode. In this mode, the cursor becomes smaller and the character at the cursor posi ion and the followings are moved one space to the right when a key is ressed, and you can insert as many characters as you wan
Wen pressing this key again or moving the cursor with cursor move keys, the insert mode will be released.

DEL; (delete) key
character at the cursor position is deleted. All characters after the deleted character are moved one space to the left.

When this key is pressed, the cursor moves one space to the left and the character in that position is deleted

S (cursor move) keys
These keys are used to move the cursor one space in the direction of the riangle: to the right, to the left, up or down. Any character which the cursor moves over does not change.

ONTROL KEY FUNCTIONS

hen this key is pressed together with a character input key, the corresponding symbol in the shift position (upper-left symbol on the key) or corresponding capital letter is entered.

AP] ke

When this key is pressed, it will lock so that all letters are entered in capitals. Numbers and symbols will be entered normally even if this ke locks. When the key is pressed again, it will unlock. While this key is locked, the CAP indicator lights up.

CODE key

When this key is pressed together with a character input key, the lowereft character or symbol printed on the graphic pattern sheet (supplied) is entered
When this key is pressed together with a character input key and the SHIFT key, the upper-left character or symbol on the graphic pattern heet is entered

GRAPH; key
When this key is pressed together with a character input key, the lower right graphic pattern printed on the graphic pattern sheet is entered. When this key is pressed together with a character input key and the SHIFT key, the upper-right graphic pattern printed on the graphic pattern sheet is entered
In the HB-55P, graphic patterns are also printed on the keyboard.
CTRLI (control) key
When this key is pressed together with certain keys, a special operation is performed. The key function is determined by the software used. Under MSX-BASIC, the following key combinations are available:
CTRL $+B$: moves the cursor to the beginning of the word at the cursor position. When the cursor is positioned at the beginning of a word, the cursor moves to the begining of the preceding word
CTRL $+C$: releases to input wait state or automatic line number

CTRL $+E$; deletes the character between the cursor position and the end of the line.
CTRL $+F$: moves the cursor to the beginning of the next word
CTRL $+G$: generates a beep sound
CTRL $+H$: has the same function as the [BS] key
CTRL + 1: has the same function as the TAB key
CTRL + J : moves the cursor one line dow
CTRL $+K$: has the same function as the HOME key
CTRL + L : has the same function as the SHIFT key + HOME key.
CTRL $+M$: has the same function as the [RETURN key
CTRL $+N$: moves the cursor to a position next to the last character in the line.
CTRL + R : has the same function as the lws key cursor position
CTRL $+X$: has the same function as the (SELECT] key.
CTRL + • : moves the cursor to the right
CTRL + 1 : moves the cursor to the left.
CTRL + " : moves the cursor up.
CTRL + _ (underline): moves the cursor down.

This key is used to move the cursor to the next tab position. In MSX BASIC, tabs are set at every eight characters. Any characters which the cursor goes over are deleted when the cursor moves to the next tab position.

RETUAN key
Press this key to indicate the end of a line of data or commands input from the keyboard. Press this key every time you finish entering a line.

ESC (escape) key
The function of this key is determined by the software used. Under MSX BASIC, this key is inoperative.

STOP key

Press this key to interrupt program execution or listing. You can restar the program by pressing this key again
Pressing this key together with the CTRL key does the same. In this case however, you can restart program execution with the CONT command but listing cannot be continued.

[SELECI] key

The function of this key is determined by the software used. Under MSX BASIC, this key is not used.

FUNCTION KEYS

Keys (F1] to F5) ([F6 to Fi0) are called function keys. The functions of these作
 follows (When these key are pressed while pressing the SHIFT key, they function as keys [F6] to IF10.):

Function key only	Function key + SHIFT key
[F1] color	[F6] color 15, 4, 4 RETURN
[F2] auto	[77 cload"
[F3 goto	F8] cont RETURN
F4 list	[F9] list. RETURN
(F5) run	[F10 cls: run RETURN

1-6. HOW TO START UP

TO START UP THE PERSONAL DATA BANK OR MSX•BASIC

1. Turn on the monitor TV and the computer.

2. Move the mark to the desired program of the Personal Data Bank or MSX-BASIC to be executed by using the cursor move keys. Then press the RETURN] key.

For further operation,
refer to "How to use the Personal Data Bank".

TO START UP A GAME

Insert the game cartridge into cartridge slot A with the illustration side toward you, or into the cartridge slot B with the illustration side up. Then Jurn on the monitor TV and the computer
For details, refer to the game instruction manual.
Note
To power on the computer again, wait more than 10 seconds after it is turned off.

1-7. TO SAVE AND LOAD A MSX-BASIC PROGRAM

The MSX-BASIC program or data entered from the keyboard can be saved on a cassette tape, a data cartridge or a micro floppydisk. This chapte explains how to save a program on a cassette tape and load it from the tape. As to save or load the program using a data cartridge, refer to the instruction manual of the Sony HBI-55 Data Cartridge.

TO SAVE A PROGRAM

1. Insert a cassette tape into the cassette tape recorder, and adjust the volume and tone control to a center position.
2. Type the save command of MSX-BASIC from the keyboard. CSAVE "program name"
Define the program name within six characters. The first character must be a letter.
3. Press the REC (record)/SAVE button of the recorder. The tape starts as soon as the button is pressed.
4. Press the RETURN key of the computer. The program is then saved on the tape.
5. When a program has been saved and message "OK" is displayed on the screen, press the STOP button of the recorder

Note

When the remote control plug is connected to the recorder, the tape star and stop functions of the recorder are controlled from the computer.

TO LOAD A PROGRAM

1. Insert the cassette tape containing the desired program into the cas sette tape recorder and rewind the tape. Then adjust the volume and tone controls to an appropriate position.
2. Type the load command of MSX-BASIC from the keyboard. CLOAD "program name"
3. Press the LRETURN key of the computer.
4. Press the PLAY/LOAD button of the recorder.
5. When loading is finished, press the STOP button of the recorder.

Note
If the program is not loaded, readjust the volume and tone controls and try again.

1-8. MEMORY MAP

HB-55P

HB.75P/75B

RAM 64 K bytes

The capacity of the free area can be checked by the FRE function

CHAPTER 2

SERVICE INFORMATION

2-1. DISASSEMBLY

2-1-1. Disassembly of Cabinet (upper)
(1) Remove the three set screws of cabinet (lower).
(2) Dis connect the connector CN11 (13P), CN12 (9P) on the
main board and CN2 (2P) on the power board.
(3). Take off the three hooks.
(4) Remove the cabinet (upper) in the direction indicated by the arrow.

2-1-2. Disassembly of MAIN Board
(1) Remove the four set screws of heat sink Note: The reinforcement (with cushion) is not attached to HB-55P
(2) Remove the three set screws of main board
(3) Remove the two set screws of plate (blind).
(4) Disconnect the connector CN10 (8P) on the main board
(4) reinforcing plate

2－1－3．Disassembly of Keyboard

CAUTION－HB－55P All the keytops are not locked，therefore remove the keyboard temporarily and taping it．
－HB－75P／75B The function key and cursor key are not locked，therefore remove the keyboard temporarily and taping it．

2－2．PROVIDING OF BASIC ROM AND FIRMWARE ROM

2－2－1．Basic ROM（IC42，43）

Basic ROM（IC42 and IC43）provides one MASK ROM （MSM38256－70RS）．To mount it to IC42，and switch JW5，JW7 to JW10 of MASK／EP switching jumpers to MASK ROM side． （remove IC43）

2－2－2．Firmware ROM（IC44）

Firmware ROM（IC44）provides MASK ROM（MSM38128A－ 77RS）．Remove the jumper JW6 for EP ROM．

2－3．REPAIR PARTS

1．Safety Related Components Warning．
Components identified by shading marked with Δ on the sche－ matic diagrams，exploded views and electrical spare parts list are critical to safe operation．Replace these components with Sony parts whose part numbers appear in this manual or in service bulletins and service manual supplements published by Sony．

2．Replacement Parts supplied from Sony Parts Center will some times have a different shape from the original parts．This is due to＂accommodating the improved parts and／or engineering changes＂or＂standardization of genuine parts＂
This manual＇s exploded views and electrical spare parts list indicate the parts numbers of＂the standardized genuine parts at present＂．
Regarding engineering part changes in our engineering depart－ ment，refer to Sony service bulletins and service manual supplements．

3．Printed Components in Bold－Face type on the exploded views and electrical spare parts list are normally stocked for replace ment purposes．The remaining parts are not normally required for routine service work．Orders for parts not shown in Bold－ Face type will be processed，but allow for additional delivery time．

4．Abbreviations

Ref．No．	Description
Cロロ，CVロロ	CAPACITOR
CNOL	CONNECTOR
CPロロ	COMBINATION PARTS
Dロロ	DIODE
DLロロ	delay Line
Fロロ	FUSE
FLロロ	FILTER
Hロロ	HEAD
1 CO	IC
Lロロ，LVロロ	INDUCTOR
Mロロ	MOTOR
MECD	METER
PLロロ	LAMP
PMOD	SOLENOID
Qロロ	TRANSISTOR
Rロロ，RVロロ	RESISTOR
RYロロ	RELAY
Sロロ	SWITCH
SBロロ	SOLAR BATTERY
Tロロ	TRANSFORMER
THロロ	THERMISTOR
Xロロ	CRYSTAL

5．Units for Capacitors，Inductors and Resistors
The following units are assumed in schematic diagrams，elect－ rical parts list and exploded views unless otherwise specified Capacitors：$\mu \mathrm{F}$ inductors：$\quad \mu \mathrm{H}$ Resistors：ohm

CHAPTER 3
 THEORY OF OPERATION

3-1. $\mathbf{Z 8 0}$ (CPU)

The Z 80 has 40 pins, and they are arranged as follows:

A11	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19		40		A10
A 12			39	\rightarrow	A9
A13 4			38	\rightarrow	As
A14			37	\rightarrow	A^{4}
A15			36	\rightarrow	A6
ϕ			35	\rightarrow	As
$\mathrm{D}_{4} \longrightarrow$			34	\rightarrow	A_{4}
$\mathrm{D}_{3} \longrightarrow$			33	\rightarrow	A3
D5 4			32	\rightarrow	A2
D6 ${ }^{4}$		280	31	\rightarrow	${ }^{\text {A }} 1$
$+5 \mathrm{~V} \longrightarrow$			30	\rightarrow	Ao
$\mathrm{D}_{2} \longrightarrow$			29	-	GND
$\mathrm{D}_{7} \longrightarrow$			28	\rightarrow	$\overline{\mathrm{RFSH}}$
DO \longleftrightarrow			27		
D1 \longleftrightarrow			26		RESET
$\overline{\mathrm{NT}} \longrightarrow 1$			25		BUSRC
$\overline{\text { NMI }} \longrightarrow$			24		WAIT
HALT			23	\rightarrow	BUSAK
MREO			22		\bar{W} R
IORQ	20		21		$\overline{\text { RD }}$

3-1-1. Functions of Pins

(1) A0 to A 15 (Address bus)

A bus line which outputs addresses when reading and writing of the memories and input/output operations.
(2) Do to D7 (Data bus)

A bus line which reads and outputs the data.
(3) MREQ and IORO
$\overline{M R E D}$ is output when accessing to memory, and $\overline{\operatorname{IORO}}$ is output when accessing to I/O port. The I/O port is an address for controlling the printer and PSG.
(4) $\overline{\mathrm{RFSH}}$

Dynamic RAM (for example 4116) is not able to memorize unless it is refreshed at certain time intervals. $\overline{\text { RFSH }}$ is the timing signal for this refreshing purpose.
(5) $\overline{\mathrm{M} 1}$

It indicates a cycle in which the CPU reads out a command to the exterior.
(6) $\overline{H A L T}$

It is signal which informs the outside that the HALT (STOP) command has been executed and that CPU has ceased the carrying out of the program. This HALT will continue until it is interrupted or reset.
(7) WAIT

This is a signal which awaits the CPU processing until the peripheral device has completed its operation, since the peripheral device cannot catch up with the processing peripheral device
speed of the CPU.
(8) $\frac{\text { speed of the }}{\text { INT }}$

They are input pins for interruptions.
$\overline{\text { NMI }}$ enables interruption at any time.
INT enables prohibition of interruption in accordance with contents of a program.
(9) $\overline{\text { RESET }}$

A pin which initializes the CPU.
(10) $\overline{B U S R O}$ and $\overline{B U S A K}$
$\overline{B U S R O}$ is a pin which requests the CPU to disconnect addresses and data buses from the CPU.
BUSAK is a pin which informs the exterior that the CPU accepts the $\overline{B U S R O}$.
(11) $\overline{R D}$ and $\overline{W R}$
$\overline{W R}$ signal is output when writing is performed for the memory or I/O devices.
$\overline{R D}$ signal is output when reading is performed for the memory or I/O devices.

3-1-2. Operation of $\mathbf{Z 8 0}$

When power supply of the $Z 80$ is turned ON, RESET signal is fed to it to clear out its internal memory contents.
The RESET pin of the 280 becomes active when set at " L ".
Therefore, when "L" signal is applied to it, the pins of the Z80
are established as follows:
[Address and data bus]
Both become " H " level. (Floating condition)
[Control pins]
All the control pins output non-active signals.
The signal level of these pins when the $\mathbf{Z 8 0}$ is in active mode is
" L " level; therefore, in this state, the $Z 80$ outputs " H " level. [Program counter]
The contents of the program counter become 0000 H .
[Interruption enabling flip-flop]
Becomes zero and becomes prohibition of interruption.
[Interruption mode]
The interruption mode becomes zero.
[Interruption page address register]
The contents of I register become OOH .
[Refresh register]
The contents of R register become 00 H
[Register file]
The contents of all registers such as $A, B, C, D, E, F, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, $E^{\prime}, F, I X, I Y, H, L$, and R become $00 H$.
When RESET becomes " H " from " L ", the $\mathbf{Z 8 0}$ starts to execute operation of the program; however, the contents of the program counter (PC) become command fetch address. This means that the operation code comes from the 0000 H address. The $\mathrm{z80}$ fetches the operation codes when it internally becomes into "a condition to execute operation fetch codes"

At first, the contents of the program counter (PC) are output, and then the contents of the refresh register (R) are output after the Z80 fetches the operation code.

From the address of the memory, which is specified by the program counter, a part of the operation code is fetched to the command register (IR).

3-1-3. M1 Cycle

A sequence to fetch an operation code is called M1 cycle. (1) When the $Z 80$ becomes M1 cycle.
(2) During the interval between the arrivals of the first clock signal and the second clock signal (it is called T_{1} state), the contents of the program counter are output to the address bus.
(3) When it is also in the T_{1} state, " L " is output to $\overline{M 1}$. At this time, the $\mathrm{Z80}$ is operating in M1 cycle, and it plays a role to inform the outside that an address to fetch the operation code on the address bus is being output.
(4) When it is also in the T_{1} state, " L " is output to $\overline{M R E O}$ and $\overline{R D}$.
Access the memory with these signals and fetch the operation code (to the command register).
(5) When it is in T_{2} state, if an external input to WAIT pin of the Z80 is " H ", the $\mathrm{Z80}$ moves to T3 state. If the WAIT pin is in " L " level, the Z80 does not move to T_{3}, but it becomes in wait state (TW), and waits until it becomes " H ".
(6) At a point when the $Z 80$ moves to T_{3} state from T_{2} state, it fetches the operation code, which is read out on data bus (D7 to Dol from the memory, to the command register (when the clock of T_{3} is being raised up).
(7) In T3 state, $\overline{M R E Q}$ becomes at first " H " and then returns to "L" again.
(8) In T3 state, the contents of the refresh register are output to the address bus. However, among the 8 bits of the refresh register, the lower 7 bits are output to the lower 7 bits of the address bus.
To indicate that the refresh address is being output to the address bus, " L " is output to RFSH pin.
(9) When the $Z 80$ becomes in T_{4} state, the $\overline{M R E O}$ signal returns to " H " from " L ".
It becomes possible to refresh the dynamic memory with the MREQ, RFSH and the address bus.
(10) In the following Fig., up to the T_{4} state shows an operation code fetch cycle. The place marked 10 denotes the T_{1} state in a cycle whichever comes next. (It depends on the command fetched immediately before.)
Up to this point, the refresh address has been output to the address bus, and $\overline{\mathrm{RFSH}}$ signal which indicates the abovementioned state has been set at "L". However, the RFSH signal also becomes " H " simultaneously when the refresh address on the address bus disappears.

It means that the refresh address for dynamic memory is being output to address bus.

Command OP code fetch cycle (M1 cycle)

3-1-4. Refresh Cycle

Refresh cycle is an indispensable and troublesome operation for DRAM. The memorized contents of the memory will be erased unless the specified row address is not accessed within the determined length of time. The term of row address access used here means that only row address and $\overline{\text { RAS }}$ are necessary Accordingly, even in a normal read cycle and a write cycle, refresh has been completed against their row addresses.
The Z80 CPU outputs address in T_{1} and T_{2} of the OP code fetch cycle and indicates the output to the memory, and it fetches $O P$ code at the clock rising up of T_{3}, and performs refresh of the dynamic memory at the rest of 2 states (T_{3} and T_{4}).
There are two methods of refreshing. The first method is to refresh the 128 row addresses continuously (Burst mode refreshing) and the other is a dispersing method to refresh each row within 2 ms (Single mode refreshing).
The Z80 is so designed as to be refreshed by conveniently using the latter method.
For the Z80, refreshment is performed so that a row address is refreshed once every M1 cycle. During the refreshing operation, $\overline{C A S}$ output is kept at H level.
Simultaneous refreshing is possible even if the data outputs of several memories are connected with the wired OR. The refreshing operation is a quasi read operation, and data in the memory is not output at that time.
The refreshing operation using only $\overline{\text { RAS }}$ is called $\overline{\text { RAS }}$ only refreshment. Driving of refreshing cycle of the dynamic memory can be performed by the $\overline{\mathrm{RFSH}}$ and $\overline{\mathrm{MREQ}}$ signals.

3-2. OPERATION WHEN POWER SUPPLY IS TURNED ON

When the power supply is turned ON, " L " signal is applied to pin 3 of IC26 during several hundreds msec with a time constant of R106 and C49. This " L " signal is inverted to " H ", and applied to pin 35 (RESET) of IC16 (PP!). Furthermore, this " H " signal is inverted to "L" signal, and it is applied to pin 26 ($\overline{\mathrm{RESET}}$) of IC41 (CPU). (IC26 is an inverter of the Schmitt trigger type.) When resetting signal is applied to IC41 (CPU), the CPU turns all of its controlling pins and address data buses to " H " levels. Pin 6 of IC21 is at " H " level. Pin 6 becomes " H " level, since " L " level is applied to pin 1 of IC21 with RESET signal. IC16 (PPI) is initially set, and this condition contunues until something is written into A port. When pin 6 of IC21 turns to "H", it turns pins 1 and 15 of IC 17 to " H ". When pins 1 and 15 of IC17 become " H ", pins 7 and 9 both become " L ".
When pin 26 of IC41 turns to " H " from " L ", this releases the resetting of the CPU, and it outputs 0000 H into the address bus and turns $\overline{M R E Q}$ signal to "L". Furthermore, pin 2 of IC37 turns to " H " with the inverter of IC38.
RFSH signal (" H ") is applied to pin 1 of IC37. The output of " H " of IC37 is inverted with IC38 and " L " signal is applied to pin 1 of IC23. This turns pin 4 to " L ". This " L " signal is applied to pins 1 and 4 of IC53.
On the other hand, $\overline{M R E Q}$ signal and signals of the address bus AB14 and 15 are applied to pins 1,2 and 3 of IC18. respectively.
Pin 4 becomes " L ", as " L " level signal is applied to pins 2 and 3 of IC18.
Owing to this, pins 9 and 12 of IC33 become " L ". However, pin 2 of IC31 is set at " L " and pin 3 of IC31 is set at " H " by the RESET signal " H ", and " L " level of pin 12 of IC33 turns pin 5 of IC53 to " L ". By turning $\overline{B R D}$ signal to " L ", pins 3, 4, and 5 of IC53 are all turned to " L ".
Consequently, pin 22 of IC44 becomes " L ", and a program stored in MASK ROM of FIRMWARE starts to run. (At this point, BASIC has not started yet.)
This program is a PLL Setting Data Sending Out Program which sends the data to IC31. Signals are fed from pins 7, 10, and 15 of IC31 to pins 2,3 , and 4 of IC7, and then the PLL starts to operate. Subcarrier of 4.43 MHz of PAL signal is oscillated.

HB-55P/75P/75B(AE/UK)

After that pin 3 of IC31 is set at " L " and pin 2 is set at " H ". Accordingly, pin 8 of IC33 becomes " L ", and pin 4 of IC32 also becomes " L ". and output of pin 6 becomes " L ". Pins 1 . 2, and 13 of IC53 become "L", and pins 22 of IC42 and IC43, also become " L " IC42 (BASIC ROM) is selected and is entered into BASIC program.
Pin $20(\overline{C E})$ of IC42 is connected to AB_{14} of the address bus. When AB 14 becomes " H ", ROM of IC42 is unable to be selected. (IC42 has a capacity of 16 K bytes from 0000_{H} to 3 FFFH .) Since $A B_{14}$ is inverted and connected to pin 20 ($\left.\overline{\mathrm{CE}}\right)$ of IC43, when $A B_{14}$ becomes " H ", pin $20(\overline{C E})$ of IC43 becomes " L ". At the same time, $A B_{14}$ and $A B_{15}$ of the address bus are connected to the inputs of pins 2 and 3 of IC18, and because $A B 14$ is at " H " and $A B 15$ is at " L ", output of pin 5 becomes " L " and pin 6 of IC32 becomes " L ". This causes pin $22(\overline{\mathrm{OE})}$ of IC43 to become "L" through IC53 and IC38, and to select ROM of IC43.
(IC43 has a capacity of 16 K bytes from 4000 H to 7 FFFH .) When address becomes 8000 H next to 7FFFH, AB15 becomes " H " and AB_{14} becomes " L "
This address data is applied to IC17 and IC18, and the contents $\left.\begin{array}{ll}\text { of pins } & 4\end{array} \mathrm{X}_{2}\right\rangle$, and $12\left(\mathrm{Y}_{2}\right)$ are output to pins $7(\mathrm{XC})$ and $9(\mathrm{YC})$. However, as they have all become " L ", thus the output of pin 4 of IC23 becomes " L ".
This signal is applied to pins 1 and 4 of IC53.
On the other hand, as address data $A B_{15}$ (" $\mathrm{H}^{\prime \prime}$) and $A B_{14}$ ("L") are applied to pins 2 and 3 of IC18, output of pin 6 becomes " L " and outputs of others become " H ". As pins 4 and 5 of IC18 become " H ", " H " is output to pin 6 of IC32.
Accordingly, " H " is applied to pin 13 of IC53, so that pin 12 of IC53 becomes "L" and output of pin 9 of IC38 becomes " H ", and ROMs of IC42 and IC43 cannot be selected. On the other hand, output " L " of pin 6 of IC18 is input to pin 2 of IC33 and " L " is output to pin 3 (pin 1 of GATE is at " H "). Then pins 3, 4, and 5 of IC53 all become "L", and output " H " of pin 6 of IC53 is inverted with IC38, and thus pin 6 of IC38 becomes "L"
The pin 6 of IC38 is connected to pin $22(\overline{O E})$ of IC44 and it selects IC44 (FIRMWARE ROM). The ROM of IC44 is continuously selected until pin 6 of IC53 becomes "L" (9000 H).
Accordingly, IC44 is capable of using 8000^{H} to 8 FFFH.

3-3. CHECKING SLOT

When the MSX-BASIC program starts operation, it executes initial setting and then checks the slot. The checking is performed in sequential order beginning with slot 0 .
In this system, slot 0 is the memory stored within this system, and slot 1 is the upper cartridge slot and slot 3 is the rear cartridge slot.
In the HB-75, MAIN RAM 64 K is assigned to slot 2.
When IC44 is selected, the program of IC44 is performed. During the performance of this program, check to see what kind of items are inserted into this cartridge slot. At this time, if instantaneously executable ROMs such as game cartridge are inserted, execution of controlling is shifted to them.
Selection of the slots is performed with IC23. IC23 is controlled with data from the PPI(IC16).
When pin 4 of IC23 is " L ", siot 0 is selected.
When pin 5 of IC23 is " L ", slot 1 is selected.
When pin 6 of IC23 is " L ", slot 2 is selected.
When pin 7 of IC23 is " L ", slot 3 is selected.
Selection of the memories is performed with IC18, and it works as follows:
When pins 4 and 5 of IC18 are "L" (addresses 0000_{H} to 7 FFFH), MSX-BASIC ROMs of IC42 and IC43 are selected. When pin 6 is " L " (addresses 8000 H to 8 FFFH), IC44 is selected.
When pin 7 of IC18 is " L " (address over COOOH_{H}), MAIN RAM is selected. (HB-55P).

IC23 (2/2) selects ROM of the cartridge slot.
IC23 (2/2) operates only when the $\overline{M R E Q}$ and $\overline{\mathrm{RD}}$ are " L ", and selects ROM of the cartridge slot.
Interchange of data between cartridge slots and external I/O is carried out through IC40, and IC40 is controlled by IC52, IC37, and IC38.
When pin 19 of IC40 is " H ", it becomes in the OFF state, and interchange of data is accordingly not carried out. When the CPU is accessed to PPI, PSG, and VDP, it turns pin 19 to " H " and closes the gate. The circuit diagram at that time is as shown in Fig. 1.
MEMORY MAP

- When pin 19 of IC40 becomes " H ":

1. When the $\overline{\operatorname{lORQ}}$ signal is at " L " level. and either one of PPI, PSG, and VDP is at " L " level.
2. When either one of the $\overline{\mathrm{M1}}$ signal or $\overline{\operatorname{IORO}}$ signal is at "H" level.
3. When the slot 0 is selected. (The ICs 29 and 30 are so designed as to input "L" level always to pin 10 of IC27 when addresses are 0000 H to FFFH.)
When one of the conditions is applicable to the abovementioned 1 to 3, the data coming through IC39 are not carried out.

- When pin 19 of IC4O becomes " L ", interchange of data is carried out, and the direction of the inerchange of data is determined by pin 1
When pin 19 becomes " L ":

1. Any slot except slot O is selected.
2. When access is not performed to the internal I/O device When access is not pe
(PPI, PSG and VDP).
When the above-mentioned two conditions are coincided.

- When pin 19 is at "L" level and pin 1 is at " H " level, data are sent out from interior of the system.
When pin 1 is at " L " level:
When $\overline{R D}$ is at " L " level, or $\overline{M 1}$ and $\overline{I O R O}$ are simultaneously at "L" level. Except for the above, they are all "H" level. When pin 1 is at " L " level, data are read into the system from the exterior.

Each pin of the cartridge slot

Pin No.	Name	Content
1	$\overline{\mathrm{CS1}}$	Address selecting signal of memory 4000 H to 7 FFFH
2	$\overline{\mathrm{CS} 2}$	Address selecting signal of memory 8000 H to BFFFH
3	$\overline{\mathrm{CS12}}$	Address selecting signal of memory 4000 H to BFFFH (for 256 K ROM)
4	$\overline{\text { SLTSL }}$	It is a slot selecting signal, which applies selecting signals peculiar to each of the respective slots.
5	Spare	Spare signal line for future use (Prohibited to be used)
6	$\overline{\text { RFSH }}$	Refreshing cycle signal
7	WAIT	WAIT request signal for CPU (Timing should be taken at the interior of the system.)
8	$\overline{\text { INT }}$	Interruption request signal for CPU
9	$\overline{\mathrm{M1}}$	Indicating signal of fetch cycle of CPU
10	$\overline{\text { BUSDIR }}$	Direction control signal of external data bus buffer
11	$\overline{\text { IORO }}$	Request signal of $1 / 0$
12	$\overline{\text { MREQ }}$	Request signal of memory
13	$\overline{W R}$	Write timing signal
14	$\overline{\mathrm{RD}}$	Read timing signal
15	$\overline{\text { RESET }}$	System reset signal
16	Spare	Spare signal line for future use (Prohibited to be used)
17 to 32	A0 to A15	Address bus signal
33 to 40	D0 to D7	Data bus signal
41 and 43	GND	Ground
42	CLOCK	CPU CLOCK (3.579545 MHz)
44 and 46	SW1 and SW2	Protection for plugging in and out
45 and 47	$+5 \mathrm{~V}$	Power supply of +5 V
48	$+12 \mathrm{~V}$	Power supply of +12 V
49	SUNDIN	Sound input signal (-5 dBm)
50	-12V	Power supply of -12 V

3-4. I/O PORT

For selecting of $1 / O$ port, address decoder of IC23 is used. The following operations are performed in order that the CPU accesses to the $1 / O$ port.

3-4-1. Selection of $1 / O$ Port

When reading out
(1) Number of input port is output to the address bus
(2) When it is in T_{2} state, " L " is output to $\overline{\overline{O R Q}}$ and $\overline{\mathrm{RD}}$. This means to access input port.
(3) When WAIT is either " L " or " H ", the Z 80 moves automatically to Tw.
(4) If in TW state, if the input to WAIT is at " H " level, the Z80 extricates itself from the $T w$ state and shifts into T_{3} state.
(5) The data which are read out from the input port on the data bus are read into interior of the $\mathrm{Z80}$.
At this time, the $\overline{O R Q}$ and $\overline{R D}$ return to " H " from " L ".

When writing in

(1)' Number of output port is output to an address.
(1)" Data to be written onto the output port is output to the data bus.
(2) In T_{2} state, " L " is output to the $\overline{\text { IORQ }}$ and $\overline{W R}$. This means to access output port.
(3). Whether the WAIT is " L " or " H ", the $\mathbf{Z 8 0}$ moves automatically to Tw.
(4). In Tw state, if the WAIT is " L ", the Tw state is continuously inserted; however, if the WAIT is " H ", the Z80 moves to T3 state.
(5). In T3 state, the $\overline{O R Q}$ and $\overline{W R}$ return to " H " from " L ". This means that the data has been written out to the output port.

The signal on the address bus of the input and output commands are output to the lower 8 bits of input and output port numbers, and the contents of the accumulator or B register are output to the upper 8 bits of the signal.
A_{3} and A_{4} of the address bus are applied to input pins 13 and 14 of address decoder of IC23. Furthermore, A_{4} to A_{7} of the address bus are applied to pin 15 ($\overline{E N}$) through IC25, IC27, IC28, IC29, and IC37. Depending on this signal, it is determined that which $1 / O$ device is selected. The selection can be made as follows:

3-5. ACCESS TO MAIN RAM (HB-55P)

In the HB-55P system, a RAM of 16 K bytes is mounted. Access to the is RAM can be carried out when the address data becomes over COOOH .

3-5-1. When Data is Read Out from RAM (HB-55P)

Address data is applied to input pins of IC49 and IC57, and at this time, the pins 1 (A) of IC49 and IC57 become "L"; accordingly, the contents of the 0 group are output to the output pins. These form a ROW address. Nextly, when pin 19 (MREQ) of IC41 (CPU) becomes " L ", the signal is applied to pin 12 of IC37. Accordingly, " L " is output to pin 11 of IC37. This signal is applied to pin 2 (D) of IC51. A clock signal is applied to pin 3 of IC51, and with the rising up of this clock signal the contents of pin 2 are output to pin 5. Owing to this, " L " is applied to each $\overline{\text { RAS }}$ pin of the dynamic RAM of IC58 to IC61 and IC65 to IC68.
Consequently, the ROW address is latched into the memory. $\overline{M R E Q}$ signal from IC41 (CPU) is applied to pin 1 of IC18. At this time, since signals of $A B_{14}$ and $A B_{15}$ of the address data are applied to pins 2 and 3 of IC18, all these pins become " H "; accordingly, pin 7 of IC18 becomes " L ". This signal is applied to pin 1 of IC24. At this time, pin 2 of IC24 is also "L" and therefore, pin 3 of IC24 becomes " L ", and the signal is also applied to pin 12 of 1 C 50 .
As IC50 operates in just the same manner as the abovementioned IC51, pin 9 of IC50 becomes " L ". At this time, pin 8 of IC50 becomes " H " and the signal is applied to pins 1 of IC49 and IC57. Accordingly, contents of 1 group are output to the outputs of IC49 and IC57. (It becomes COLUMN address.) The signal from pin 9 of IC50 is applied to pin 12 of IC51, and its contents are output to pin 9 of IC50 with the clock signal. It takes 10 ns for this process. (10ns delayed).
During this time interval, the address data depending on outputs of IC49 and IC57 becomes stable. The pin 9 of IC51 is connected to pin $15(\overline{\mathrm{CAS}})$ of the dynamic memory, and by setting it to " L " the COLUMN address is latched into memory. When MREQ signal becomes " H " from " L ", pin 2 of IC51 becomes " H " from " L ", and pin 5 (Q) also becomes " H ". Accordingly, pin 4 (RAS) of the memory becomes " H " from " L ". Pin 6 of IC51 becomes " L " from " H ", and this signal is applied to pins 10 (PRESET) of IC50 and IC51 to shift the output of pin 9 of IC51 to " H ".
As a result, pin $15(\overline{\text { CAS }})$ of the memory becomes " H " and the contents of the previously set address becomes to be read out from the memory.
When RFSH signal of " L " level is applied to pin 13 of IC37 from the CPU, pin 11 of IC37 also becomes " L ", and the signal is also applied to pin 2 of IC51. Therefore, " L " is output to pin 5 of IC51 and the refreshing of the dynamic memory is carried out.
When pin 13 (signal of $\overline{\text { RFSH }}$) and pin 12 (signal of $\overline{\text { MREQ }}$) of IC37 all become " H ", pin 5 of IC51 becomes " H " and pin 4 ($\overline{R A S}$) of the memory becomes " H ".

3-5-2. When Data is Written into RAM (HP-55P)

When data is written in, $\overline{M R E Q}$ signal and $\overline{W R}$ signal of "L" level are output from the CPU. The process to set an address to the memory is the same as in the data reading out.
Output timing of WR signal from the CPU is slightly later than that of MREQ signal. Therefore, during this time interval, setting of address is carried out.
WR signal is applied to pin 9 of IC24 and MREQ signal is applied to pin 10
When pins 9 and 10 are " L ", pin 8 becomes " L ", and shift pin $3(\overline{W E})$ of the memory to " L " to write in the data to the address which has previously been set.

3-5-3. Dynamic RAM (4116) (HB-55P)

$\begin{gathered} (-5 \mathrm{~V}) \text { Vbi } \\ \text { DIN } \end{gathered}$			
	1	16	- vss (GND)
	2	15	- CAS
WRITE	3	14	- Dout
' $\overline{\text { RAS }}$	4	13	- A6
Ao	5	12	- A_{3}
A2	6	11	A4
A1	7	10	A5
$(+12 \mathrm{~V}) \mathrm{V}$ do	8	9	$\mathrm{Vcc}(+5 \mathrm{~V})$

A0 - A6	Address input Column address strobe
CAS	Data intput
DIN	Data output
DouT	ROW address strobe
RAS	Read/write input
WRITE	Power supply $(-5 \mathrm{~V})$
VBB	Power supply $(+5 \mathrm{~V})$
VCC	Power supply (+12 V)

The above shows the pin connection diagram of dynamic RAM (4116).

The memory cells of $16384(1024 \times 6)$ are composed of 128 rows $\times 128$ columns.
To select each memory cell. 7 bits of ROW address and 7 bits of column address are necessary. However, there are only 7 (Ao to A6) address input pins on the memory chip.
As a result, to input 14 bits of an address to the memory chip. input has to be carried out twice, that is by dividing the 14 bits of address into two parts of 7 bits each.

3-5. ACCESS TO MAIN RAM (HB-75P/75B)

In the HB-75P/75B system, a RAM of 64 K bytes is mounted. Access to this RAM can be carried out when the slot 2 is selected.

3-5-1. When Data is Read Out from RAM (HB-75P/75B)

Address data is applied to input pins of IC49 and IC57, and at this time, the pins 1 (A) of IC49 and IC57 become "L"; accordingly, the contents of the 0 group are output to the output pins. These form a ROW address. Nextly, when pin 19 (MREO) of $\operatorname{IC} 41$ (CPU) becomes " L ", the signal is applied to pin 12 of IC37. Accordingly, " L " is output to pin 11 of IC37. This signal is applied to pin 2 (D) of IC51. A clock signal is applied to pin 3 of IC51, and with the rising up of this clock signal the contents of pin 2 are output to pin 5 . Owing to this, " L " is applied to each RAS pin of the dynamic RAM of IC58 to IC61 and IC65 to IC68.
Consequently, the ROW address is latched into the memory. $\overline{M R E Q}$ signal from IC41 (CPU) is applied to pin 1 of IC18. At this time, since signals of $A B_{14}$ and $A B_{15}$ of the address data are applied to pins 2 and 3 of IC 18 , all these pins become " H "; accordingly, pin 7 of IC18 becomes "L". This signal is applied to pin 1 of IC24. At this time, pin 2 of IC24 is also " L " and therefore, pin 3 of IC24 becomes "L", and the signal is also applied to pin 12 of IC5O.
As IC50 operates in just the same manner as the abovementioned IC51, pin 9 of IC50 becomes " L ". At this time, pin 8 of IC50 becomes " H " and the signal is applied to pins 1 of IC49 and IC57. Accordingly, contents of 1 group are output to the outputs of IC49 and IC57. (It becomes COLUMN address.) The signal from pin 9 of IC50 is applied to pin 12 of IC51. and its contents are output to pin 9 of IC5O with the clock signal. It takes 10 ns for this process. (10ns delayed).
During this time interval, the address data depending on outputs of IC49 and IC57 becomes stable. The pin 9 of IC51 is connected to pin $15(\overline{\mathrm{CAS}})$ of the dynamic memory, and by setting it to " L " the COLUMN address is latched into memory. When MREO signal becomes " H " from " L ", pin 2 of IC51 becomes " H " from " L ", and pin 5 (Q) also becomes " H ". Accordingly, pin 4 (RAS) of the memory becomes " H " from " L ". Pin 6 of IC51 becomes " L " from " H ", and this signal is applied to pins 10 (PRESET) of IC50 and IC51 to shift the output of pin 9 of IC51 to " H ".
As a result, pin $15(\overrightarrow{\mathrm{CAS}})$ of the memory becomes " H " and the contents of the previously set address becomes to be read out from the memory.
When $\overline{\text { RFSH }}$ signal of "L" level is applied to pin 13 of IC37 from the CPU, pin 11 of IC37 also becomes " L ", and the signa is also applied to pin 2 of IC51. Therefore, " L " is output to pin 5 of IC51 and the refreshing of the dynamic memory is carried out.
When pin 13 (signal of $\overline{\mathrm{RFSH}}$) and pin 12 (signal of $\overline{\mathrm{MREQ}}$) of IC37 all become " H ", pin 5 of IC51 becomes " H " and pin 4 (RAS) of the memory becomes " H ".

3-5-2. When Data is Written into RAM (HP-75P/75B)
When data is written in. $\overline{M R E Q}$ signal and $\overline{W R}$ signal of "L" level are output from the CPU. The process to set an address to the memory is the same as in the data reading out.
Output timing of $\overline{W R}$ signal from the CPU is slightly later than that of MREQ signal. Therefore, during this time interval, setting of address is carried out.
 applied to pin 10.
When pins 9 and 10 are " L ", pin 8 becomes " L ". and shift pin 3 (WE) of the memory to " L " to write in the data to the address which has previously been set.

3-5-3. Dynamic RAM (3764) (HB-75P/75B)

AO - A7	Address input Column address strobe
CAS	Data input
DIN	Data output
DOUT	ROW address strobe
$\overline{R A S}$	Read/write input
WRITE	Power supply $(+5 V)$
VDD	GND
VSS	

The above shows the pin connection diagram of dynamic RAM (3764).

The memory cells of $65536(4096 \times 16)$ are composed of 512 rows $\times 512$ columns.
To select each memory cell, 8 bits of ROW address and 8 bits of column address are necessary. However, there are only 8 (AO to A7) address input pins on the memory chip.
As a result, to input 16 bits of an address to the memory chip, input has to be carried out twice, that is by dividing the 16 bits of address into two parts of 8 bits each.

3-5-4. Read Cycle Procedure

(1) Determine the row address.
(2) Drop $\overrightarrow{\mathrm{RAS}}$. (Internally latch the 7 -bit (HB-55)/8-bit (HB-75) row address.)
(3) Determine the column address.
(4) Drop $\overline{\mathrm{CAS}}$. (Internally latch the 7 -bit (HB-55)/8-bit (HB-75) row address.)
(5) Raise $\overline{\mathrm{RAS}}$.
(6) Raise $\overline{C A S}$ after reading data

The write cycle, excluding WRITE, is carried out in the same manner as the read cycle.
There are 2 write modes. One is called the early write mode in which WRITE falls before $\overline{\text { CAS }}$ falls. The other is called the delay write mode in which WRITE falls while CAS is being low. The read cycle is normally carried out in the early write mode.

(A): When the signal in line (A) is set at "L" by Memory Select. a read/write operation can be done for the memory.
(B): When the signal in line (B) is set at " L " by Memory Select/Refresh, RAS is issued.
(C): The signal in line (C) indicates the same clock as CPU CLOCK.

3-6. PRINTER

IC30 is a 3 -input NOR gate. When all input signals are " L ", the output signal at pin 8 of IC3O is " H ". Pin 8 of IC30 is connected to pin 11 of IC39. When the signal at pin 8 of IC30 is "H", data can be IC39.
The following signals are applied to IC30.
a. When both $\overline{\text { ORQ }}$ and $\overline{W R}$ are " L ", the signal at pin 11 of IC30 is " L ".
b. When pin 9 of 1 C 30 is selected by address decoder, the signal at pin 9 of IC30 becomes " L "
c. When $A B O$ in the address bus is " H ", the signal at pin 10 of IC 30 is " L ".

In the above state, data can be issued on the printer. Thereafter, the printer starts printing data when a strobe signal is issued to the printer.
Select 91 H at the I/O port, latch the print data, and send a strobe signal in 90 H . Then, control accesses the printer.
The strobe signal is issued in the following manner.
Signals identified by a, b, and c are fed to inverter IC29 and NOR gate IC28.
The $1 / O$ port is set in 90 H at this time. ABO in the address bus is low and the address decoder (at pin 10 of IC23) selects the printer. Thus, both TORQ and WR become " L ".
The input signals at pins 11 and 12 of IC28 are " L " and the otuput signal at pin 13 of IC28 is " H ". The input signal at pin 13 of IC29 is "L" and the output signal at pin 12 of IC29 is " H ". The signals at pin 13 of IC28 and pin 12 of IC29 are fed to pins 13 and 12 of IC27, respectively. The signal at pin 11 of IC27 becomes "L" and it is fed to pin 3 of IC34. When either $\overline{I O R Q}$ or $\overline{W R}$ becomes " H ", the signal at pin 13 of IC29 becomes " H ". The signal at pin 12 of IC27 becomes " L " and the signal at pin 11 of IC27 becomes " H ".

It causes the signal at pin 3 of IC34 becomes " H " from " L ". Data fed to pin 2 of IC34 is issued to pin 6 of IC 34 while the signal at pin 3 of IC34 rises. Data at pin 2 of IC34 is "L" at that time, and the signal at pin 6 of IC34 becomes " H ". Thus, the signal at pin 8 of IC25 becomes " H " to turn on 027 Thus, $\overline{\text { PSTB }}$ causes the printer to start printing data
Data cannot be received by the printer when the printer is performing a printing operation. In this state, the printer issues BUSY to the controller. BUSY is used to decide whether or not data is to be sent to the printer. BUSY is fed to pin 12 of IC34 through IC25. In this state, $\overline{\mathrm{M} 1}$ is fed to pin 9 of IC12 (1/4) M1 informs the controller that operation codes are being fetched by the CPU. The inverted $\overline{\mathrm{M} 1}$ is fed to pin 11 of IC34. Data appearing at pin 12 of IC34 is issued to pin 9 (Q) of IC34 and then fed to pin 14 of IC55. (BUSY)
$\overline{I O R Q}$ is fed to pin 6 of IC52. When the signals at pins 5 and 6 of IC52 become " H ", the signal at pin 4 of IC52 becomes " L ". $\overline{M 1}$ becomes " H " speedily, and thus the signal at pin 4 of IC52 becomes " L " at the end of $\overline{M 1}$. It is then fed to pin 2 of IC28.
When both $\overline{T O R Q}$ and $\overline{R D}$ are " L ", the signal at pin 3 of IC28 is " L ". When the signals at pins 2 and 3 of IC28 become " L ", the signal at pin 1 of IC28 becomes " H " and then it is fed to pin 1 of IC27.
Pin 13 of IC28 is connected to pin 2 of IC27. Both the input signals at pins 11 and 12 of IC28 are " L " since the I / O port is set in 90 H .
Both the signals at pins 1 and 2 of IC27 become " H ", the signal at pin 3 of IC27 becomes " L ", and the signal at pin 15 of IC55 becomes " L " to send data from pin 14 to pin 13 of IC55. Data is input to microprocessor $\mathrm{Z8O}$ so as to check whether or not data is BUSY.

3-7. PROGRAMMABLE PERIPHERAL

 INTERFACE (PPI) IC16

The diagram above shows the functions of 8255 A .
The 8255 A is a programmable, general-purpose $1 / O$ device designed to construct a 8 -bit microcomputer system, and it is characterized by the followings:
(1) An arbitrary function can be selected at the 24 bit $1 / 0$ terminal by program specification.
(2) Power is supplied from a single 5 V power supply.
(3) The direct bit set/reset function is provided.

When $\overline{R D}$ is set active by making it " L " in the read mode or when
$\overline{W R}$ is set active by making it " L " in the write mode, data can be
transferred between the data bus and each port.
$\overline{\mathbf{C S}}$ (CHIP SELECT): By setting $\overline{\mathrm{CS}}$ at " L ". communication of 8255A with the CPU is permitted. When $\overline{\mathrm{CS}}$ set at " H ", the data bus has high impedance and control from the CPU is disregarded.
$\overline{\text { Wr }}$ (WRITE): $\overline{\text { WR }}$ is a write enable signal for the 8255 A . When WR is " L ", data or control words can be written into the 8255A.
Ao and A_{1} (PORT ADDRESS): They are used to select and control port A, port B, port C, or the control register when combined with $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$. They are also used as low order 2 bits (A_{0} and A_{1}) for the CPU address bus.
RESET: When RESET is " H ", data in all registers (including the control register) within the 8255 A is cleared.
All the ports are set in the input mode after register contents are cleared.

HB-55P/75P/75B(AE/UK)

When using C port as an output port, any 1 bit only out of the 8 bits in the C port may be SET (H level)/RESET (L level) with the control word from the CPU.
In this way, the program or data may be SAVEd to the TAPE.

Port C	3	2	1
PC7	1	1	1
PC6	1	1	0
PC5	1	0	1
PC4	1	0	0
PC3	0	1	1
PC2	0	1	0
PC1	0	0	1
PC0	0	0	0

The signal system when recording tape with MSX is performed by FSK modulation and start-stop synchronization (non synchronization) system. This signal is already generated in the software.
The FSK modulation is a system whereby the frequency of carrier wave may be increased or decreased when the data is either " 1 " or " 0 ". In the MSX, when the transmitting speed is 1200 buads, it is 1200 Hz at " 0 ", and 2400 Hz at " 1 ". These are all performed in the software of the MSX. Usually when transmitting or receiving data, it is necessary to set the rules beforehand by the transmitting side and receiving side regarding the data system and the transmission and receiving procedures. The start-stop synchronization system is a system whereby the start bit is firstly placed at the head of the data, and nextly comes the data of the predetermined number of bits and the parity bit, and followed lastly by the stop bit.
In the MSX, a single data is transmitted by 10 bits which are comprised of 1 bit of start bit, 8 bits of data bits and 1 bit of stop bit.
The CPU sends these signals through PPI (IC16).

3-8. PROGRAMMABLE SOUND GENERATOR (PSG) IC48

The IC48 at PSG is possible to make sounds through 3 channels with a single IC, and may also generate noise.
The interior of the PSG is arranged in the manner shown in the diagram on the next page.
Register O to 5 determine the frequency of each respective channels and are called channel A, channel B and channel C. As registers 1,3 , and 5 are divided by 4 bits, the values of 0 to 15 are input into these registers. As registers 0,2 , and 4 are divided by 8 bits, the values of 0 to 255 are input into these registers. Register 6 determines the noise frequency and is divided by 5 bits, the values of 0 to 31 are input into this register.
Register 7 is a switch, and it performs the ON/OFF of the sound of the respective channels or generates noise only.
As this register is negative logic, it becomes activated at " L ". When all are turned ON they become 00 H , and when all are turned OFF they become 3FH.
Registers 8, 9, and 10 are for use in adjusting the volume of the respective channels, and when bit 4 is " 0 " volume adjustment in 16 stages may be performed with bits 0 to 3 .
When bit 4 is at " 1 ", bits 0 to 3 are ignored and the volume and output systems of the respective channels will vary with the use of an envelope oscillator.
Registers 11 and 12 determine the envelope frequency. Adjustments are performed respectively with 8 bits each.
Register 13 is a place where the system of the envelope waveforms are altered, and as it is comprised of 4 bits the values of 0 to 15 are input.
in order to write in the value to the respective registers or to read out the values of same, they are controlled by signals A_{0} and A_{1} which are added to pin 29 (BC 1) and pin 27 (BDIR).
Register 14 controls $1 / O$ port A, and register 15 controls I/O port B.

The combinations of A_{0} and A_{1} are as follows:

	(27)	(29)		
A_{1}	(BDIR)	Ao	(BCI)	
0	(1)	0	(1)	Specifies register.
0	(1)	1	(0)	Writes in value to register.
1	(0)	0	(1)	The contents of the register are output to data bus.
1	(0)	1	(0)	Not operated.

The output signals are output to the respective channels from pins 3, 4 and 38 .
These signals are combined together and amplified with 026. The output from the address decoder is connected to pin 4 of IC24, and when PSG is selected it becomes " L ". In addition, pin 5 is connected to $\overline{I O R Q}$ and when it becomes " L ", pin 6 becomes "L".
Therefore, pin 9 of IC52 and pin 11 of IC52 become "L" and operates in the manner stated in the prior clause by AO and A1 of the address bus.

3-8-1. I/O Port of PSG (IC48)
Ther are 2 I/O ports in IC48 and port A is used for input, and port B for output.
These I/O ports may be used as a connector when the joystick is being used.
When the number 7th bit (pin 7) of port B is set at " L ", it selects the input from CN8, and when set at " H " it selects the input from CN9.
When the pins 1 of IC62 and IC63 are set at " L ", the VO to YO signals appear at the output, and these signals are added to port A of IC48.
When the pins 1 of IC62 and IC63 are set at " H ", the V 1 to Y 1 signals are added to IC48.

3-9. VIDEO DISPLAY PROCESSOR (VDP) IC6

The functions of this IC are as follows:

- Resolution of 256×192 bits
- Uses $4 \mathrm{~K}, 8 \mathrm{~K}$, and 16 K dynamic RAMs
- Function of automatic refresh of dynamic video RAM
- Displays 16 colors including black, white and transparent
- Color difference signal output of PAL system
- Occurence of interruption of each frame is possible
- Automatic processing of superimposition of pictures

This IC controls display screens of the family color television and color monitor television. It outputs all video signals, control signals, synchronizing signals, etc., which are based on the PAL system, and performs read/write to VRAM as also refresh.
The most distinguished feature of the VDP is the display function of 32 pieces of sprites (graphic pattern of animation pictures). The sprite data registered in the V-RAM are displayed on the sprite surfaces.
These are 8×8 bits or 16×16 bits, and they can be enlarged to twice the sizes of their original sizes.
The color specification (1 color of the 16 colors) of the sprite and the display position are also designated on the VRAM.
By rewriting this display position coordinates, it can be run at a high speed within the picture.
In accordance with the priority order (\#0 is 1 st priority) on the surface of the sprite, the low order sprite is erased by the high order sprite, and a 3-dimensional depth effect can be obtained.

3-9-1. VRAM Mapping

The figure below shows an example of the mapping of the VRAM when the sprite and graphic I mode are used. (When used with the MSX, there are some differences according to the types of software used.

0		$0^{0000 \%}$
1024	Sprite generator table (1024 bytes)	
		O400H
	Pattern name table (768 bytes)	
1792		O700H
	Sprite attribute table (128 bytes)	
1920		O780
	Color table (32 bytes)	
1952		$\mathrm{OFAOH}^{\text {OR }}$
	Not used (96 bytes)	
2048		$\mathrm{O8OOH}$
	Pattern generator table (2048 bytes)	
4095		OFFFH

(1) Data area of Graphic I

1) 8×8 bits (8 bytes)

- Maximum 256 kinds
- Maximum 2048 bytes (8 bytes $\times 256$)

2) Pattern name table

A table which displays pattern on screen and to store the data which specifies its position.
3) Color table

- A table which stores the color codes of the picture
(2) Data area of sprite

1) Sprite attribution table

- Coordinates of sprite
- Selection of display sprite
- Color code specification of sprite

2) Sprite generator table

- Picture data of sprite
- Maximum 256 kinds
- Maximum 2048 bytes (8 bytes $\times 256$)

The figure below shows an example of 16 K bytes VRAM mapping when graphic II is used. (When used with the MSX, there are some differences according to the types of software used.)

(1) Data area of Graphic II

1) Pattern generator table

- 8×8 bits (8 bytes)
- Maximum $768(256 \times 3)$ kinds
- Maximum 6144 (2048×3) bytes

2) Pattern name table

- $768(256 \times 3)$ bytes

3) Color table

- Maximum 6144 (2048×3) bytes

3-9-2. VDP Register

In the VDP register, there are a register used exclusively for 8 writing ins and one status register (exclusive to reading out) indicating the state of the VDP.
The picture display is performed by setting data necessary to VDP register, and by writing in picture data to VRAM (dynamic video refresh RAM).

Setting of respective registers:

(1) Register \#0 and \#1

Register \# 1

M1	M2	M3	Display mode
0	0	0	Graphic I
0	0	1	Graphic II
0	1	0	Multi-color
1	0	0	Text

(2) Register \#2

Initial setting of pattern name table

Register \#2

As the VRAM of VDP is up to 16 K bytes (3 FFH) only and can be shown with 14 bits, the VRAM addresses become as shown in above figure.
Set the upper 4 bits of the VRAM addresses to the lower 4 bits of Register \#2. When the pattern name table starts from address $>400_{\mathrm{H}}(1024)_{10}$, the content of Register \# 2 becomes 01 .
(3) Register \#3

Initial setting of color table

Set upper 8 bits at the head of the addresses of the VRAM color table to Register \#3.
When the color table starts from address $>780 \mathrm{H}$ (1290) 10 , the value of register \#3 becomes 1 E .

Set the uppermost bit of the head address of VRAM color table
to the uppermost bit of Register \#3, and set the rest of the 7 bits
all to " 1 ".
When color table is above 2000 H , Register \#3 becomes FFH.
When it is below 2000 H , it becomes 7 FH .
(4) Register \#4

Initial setting of pattern generator table

Set upper 3 bits of the head address of VRAM pattern generator table to lower 3 bits of register \#4.
When the pattern generator table starts from address $>800_{\mathrm{H}}$ (2048) 10 , the value of register \#4 becomes >01.
(5) Register \#5

Initial setting of sprite attribution table

Set upper 7 bits of the head address of VRAM sprite attribution
table to lower 7 bits of register \#5.
When the sprite attribution table starts from address $>700 \mathrm{H}$
(1792)10, the value of register \#5 becomes $>O E$.

(B) Register \#6

Sprite generator table

Register \#6

7	6	5	4	3	2	1	0
0	0	0	0	0	Sprite generator table		

VRAM addresses of sprite generator table

Set upper 3 bits of the head address of VRAM sprite generator
table to lower 3 bits of register \#6.
When the sprite generator table starts from address 0 , the value of register $\# 6$ becomes >00.

(7) Register \#7

Setting of text color/backdrop color

Performs the specification of colors when the text mode is selected.
The upper 4 bits specify the color of character data " 1 ", the lower 4 bits specify the color of character data " 0 " and the color of the backdrop.
When mode other than text mode is specified, the lower 4 bits become backdrop color specification. The VDP color specification is carried out by 16 kinds of codes; namely, from \$0 to \$F. The correspondence of the respective codes and colors is as follows:

Code	Color	Code	Color
0	Transparent	8	Medium red
1	Black	9	Light red
2	Medium green	A	Dark yellow
3	Light green	B	Light yellow
4	Dark blue	C	Dark green
5	Light blue	D	Magenta
6	Dark red	E	Gray
7	Sky blue	F	White

3-9-3. VDP Status Register (for reading out only)

(1) Interruption flag (F)

When IE (No. 5 bit) of register \#1 is set at "1", the INT output of VDP becomes active ("L'") when the scanning of the picture has ended.
(2) 5 S and No. 5 sprite number

When sprites of more than 5 exist in the same horizontal line and the interruption flag (F) is " 0 ", the " $5 S^{\prime}$ " bit will be set at " 1 ".
In addition, the number of the No. 5 the sprite surface will be maintained at lower 5 bits.
(3) Collision flag (C)

When 1 picture element of more than 2 sprites collide (in accord), it is set at " 1 ".

3-9-4. Reset of VDP Status Register

The status register is reset in the following cases.

1) Input of external reset signal.
2) Reading out of status register

When the flag is once set, it is continuously set unless the reading out of the next status register is performed.

3-9-5. Writing In to the VDP Register

Write in data such as function selection of display mode of the VDP register (for writing in only) and establishment of the respective base addresses
The transmission of data from the CPU is carried out in the following way

Transmit data with No. 1 byte.
The No. 2 byte specifies the register of the receiving end of data at lower 3 bits. The uppermost bit should be " 1 ", and the next 4 bits should be " 0 ".

Control signals
CSW: When writing in to VDP the 8 bits data (Do to D7) from the CPU, it becomes active ("L").
The data is set to VDP during the rising time of this signal.
CSR: When it is active ("L"), the VDP outputs the 8 bits (Do to D_{7}) to bus line.
MODE: Set at "L" when transferring data from CPU to VRAM, or when transferring data from VRAM to CPU. In cases other than above, set at " H ".

3-9-6. Writing In to VRAM
The CPU transfers data to VRAM after going through VDP, with the 14 bit automatic increment address register stored within the VDP.
It is necessary to use 2 bytes in setting up this address register. Figure below shows how to set up this address register and perform data transfer.

Set up the lower 8 bits of VRAM address with No. 1 byte. Set up upper 6 bits with No. 2 bytes.
At this time, the upper 2 bits are (01). Transmit data with No. 3 byte.
Once the address register is set up, it is automatically incremented every time the next No. 3 byte transfers data. The MODE signal is set at " H " when transferring address, and at L" when transferring data.

3-9-7. Reading Out of Status Register

The CPU performs the reading out with 1 byte the contents of the status register. The respective control signals at this time are as follows:

						Control signals					
	7	6	5	$8_{i t s}$	3	2	1	0	$\overline{C S W}$	$\overline{C S F}$	MODE
Status register data	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	H	L	H

3-9-8. Reading Out from the VRAM

The CPU reads out the data from VRAM after going through VDP. Addresses are automatically incremented.

		Control signals		
		CSW	$\overline{\mathrm{CSR}}$	MODE
No. 1 byte: Address set up	$A_{7} A_{6} A_{5} A_{4} A_{3} A_{2} A_{1} A_{0}$	L	H	H
No. 2 byte: Address set up	$00 A_{13} A_{12} A_{11} A_{10} A_{9} A_{8}$	L	H	H
No. 3 byte: Data		H	L	L

This device employs the $1 / O$ ports 98 H to 99 H for VDP use. The control signals $\overline{C S W}$ and $\overline{C S R}$ of IC6 (VDP) become active when $\overline{\text { IORQ }}$ and $\overline{R D}$ or $\overline{W R}$ become " L " when the address bus signal is 98 H or 99 H .
When $\overline{I O R Q}$ and $\overline{R D}$ are " L ", $\overline{C S \bar{R}}$ becomes active.
When $\overline{I O R Q}$ and $\overline{W R}$ are " L ". $\overline{C S W}$ becomes active.
When the address bus signal is 98 H , it is accessed to VRAM. When the address bus signal is 99 H , it is accessed to VDP register.

3-9-9. Display Limitation of Sprite
The hatched portion becomes transparent and the background pattern is displayed.

(1) The sprites up to 4 can take place on a same horizontal line.
(2) When the sprites of more than 5 take place on the same horizontal line, 4 sprites that have high priority (in the order of $\# 0, \# 1 \ldots . . \# 32$) are displayed and the sprite from 5 of \#0, \#1 $\ldots \ldots$ \#32) are disp
and above are not displayed.
(3) The state of the sprites can be ascertained by referring to the status register

CHAPTER 4 BLOCK DIAGRAM

JVERALL OVERALL

CHAPTER 5

SCHEMATIC DIAGRAM AND PRINTED CIRCUIT BOARD

SEMICONDUCTOR PIN ASSIGNMENTS

TYPE	PAGE	TYPE	PAGE	TYPE	PAGE
10E-2	5-12	MB74LS00	5-7	SN74LS245N	5-9
		MB74LS02	5-7	SN74LS27N	5-8
1N4148H	5-12	MB74LS04	5-7	SN74LS32N	5-8
		MB74LS08	5-7	SN74LS367AN	5.8
1S1555	5-12	MB74LS09	5-7	SN74LS373N	5-9
1S2076	5-12	MB74LS10	5-9	SN74LS645N	5-10
1S2473	5-12	MB74LS11	5-9	SN74LS74AN	5-8
		MB74LS126A	5-10	SN74LS86N	5-9
$1 \mathrm{SS1} 19$	5-12	MB74LS139	5-9		
$1 \mathrm{SS133}$	5.12	MB74LS14	5-7	TMS9929ANL	5-11
$1 \mathrm{SS148}$	5-12	MB74LS145	5-7		
1SS202	5-12	MB74LS153	5-8	US1035	5-12
		MB74LS157	5-8		
2SA1027R	5-12	MB74LS175	5-10	uPC311C	5-11
2SA1048	5-12	MB74LS27	5-8		
2 SA1115	5-12	MB74LS32	5-8	uPD4066BC	5-6
2SA1175	5-12	MB74LS367A	5-8	uPD416C-2	54
2SA733	5-12	MB74LS373	5-9	UPD780C-1	5-4
		MB74LS74A	5-8	uPD8255AC-5	5-2
2SC1364	5-12	MB74LS86	5-9		
2 SC 2001	5-12			YM-2149	5-4
2SC2120	5-12	MBM27128	5-3		
2SC2458	5-12				
2 SC 2603	5-12	MCM4116BP20	5-4		
2 SC 2785	5-12				
2SC641K	5-12	MSM3764-15RS	5-6		
2 SC 945	5-12	MSM3764-20RS	5-6		
		MSM38128ARS	5-5		
2SD1012	5-12	MSM38256RS	5-5		
2SD1020	5-12				
		NJM79L??A	5-11		
2SK30A	5-12				
		RB402	5.12		
AY-3-8910	5-2				
		RD??EL	5-12		
CX7925A	5-6				
		SI-3052V	5-11		
HD14066BP	5-6	SI-3122V	5-11		
HD74LS157P	5-8				
HD74LS74AP	5-8	SLP-171D	5-12		
HD74LS86P	5-9				
HD74LS373P	5-9	SN74LS00N			
HD74LS645P	5-10	SN74LSO2N	5-7		
		SN74LS04N	$5 \cdot 7$		
HM4864P-2	5-6	SN74LS08N	5-7		
HM4864P-3	5-6	SN74LS09N	5.7		
		SN74LS10N	5-9		
HN4827128G	5-3	SN74LS11N	5-9		
		SN74LS126N	5-10		
KV1320	5-12	SN74LS139N	5-9		
		SN74LS14N	5-7		
LH0080A	5-4	SN74LS145N	5.7		
		SN74LS153N	$5-8$		
LM1889N	5-6	SN74LS157N	5.8		
		SN74LS175N	$5 \cdot 10$		

MBM27128 (FUJITSU)

$\frac{\text { TERMINAL }}{\text { MODE }}$	$\overline{C E}$	$\overline{\mathrm{O}}$, $\overline{\text { GM }}$	Vep	vee	OUTPuts
READ	-	\bigcirc	1	+5v	+5v	data out
Stand-by	1	\times	\times	+5v	+5v	IMPEDANC
programming	0	1	\bigcirc	+21v	+21v	data in
PROGRAM VERIFY	-	-	,	+21v	+5v	data out
PROGRAM	1	\times	\times	+21V	+5v	IMPGH
$\begin{array}{\|l\|} \hline \mathrm{HIGH} \text { SPEED } \\ \text { PROGRAMMING } \\ \hline \end{array}$	0	1	\bigcirc	+21 V	$+6 \mathrm{~V}$	data in

1; TTL LEVEL High voltage in
, DON'T CARE

MSM38256RS (OKI)
N-MOS MASK PROGRAMMABLE ROM 256 K-BIT (32768×8)

LM1 889N (NSC)
TV VIDEO MODULATOR
TV VIDEO MODULATOR

- TOP VIEW -

SNL 2 INPOUT POSITIVE-NAND GATE

MB74LSO2 (FUJITSU)
MB74LSO2 (FUUITSU)
SN74LSSO2N (TII)
TL L-INPUT POSITVE-NOR GATE

- TOP VIEW -

MB74LSO8 (FUUITSU)
SN74LSOBN (TIII
TL 2-INPUT POSITVE-AND GATE
TLL 2-INPUT POSITIVE-AND GATE

- TOP VIEW -

MB74LSO9 (FUJITSU)
SN74LSO9N (Ti)
TTL --INPUT POSITIVE-ANO GATE WITH OPEN-COLLECTOR

MB74LS14 (FUJITSU)
TL SCHMITT TRIGGER INVERTER

- TOP VIEW -

MB74LS145 (FUJITSU)
SN74LS145N (TI)
SN74LS145 (TII)
TLL BCD-TO-DECIMAL DECODER/DRIVER
TLL BCD-TI-DECIMAL DECODER/D

- TOP VEW -

HD74LS157P (HITACHI)
MB74LS157 (FUJITSU) MB74LS157 (FU
SN74LS157N (TI)

TTL L-LINE-TO-T-LINE DATA SELECTOR/MULTIPLEXER
\rightarrow TOP VEW -

MB74LS27 (FUJITSU)

SLL 3-1NPUT POSTIVE: Nor GATE

- TOP VIEW -

MB74LS32 (FUJITSU)
SN74LS32N (TI)
TL 2 INPUT POSITVE-OR GAT
TLL 2.INPUT POSITIVE-OR GATE

- TOP VIEW -

MB74LS367A (FUJITSU)
SN74LS367AN (TI)
TL BUS DRIVER WITH 3 -STATE OUTPUTS
TL BUS DRIVER WITH 3 -STATE OUTPUTS

- TOP VIEW -

		Ein	Di8	operation
Otr m		\bigcirc		$B 10 \mathrm{~A}$
		0	1	${ }^{\text {A } 108}$
$\mathrm{A}, 2_{2}^{2}$	19en im	\square	\times	Hi－2
		0：LOw	W Le	vel
423	188）	1： H 1	SH	Evel
$4^{4} 4$	$7^{81} 8$	x：00	NiT	CMPEDANCE
445	${ }^{16} 83$		196	
			${ }^{\circ}$	${ }^{18}$
${ }^{25} 6$	${ }^{15}{ }^{84}$		－	${ }^{8116}$
46	${ }^{14} 85$	${ }_{4}^{4}{ }^{4}$ A	\sim	${ }^{8} \cdot 115$
		${ }_{-}{ }^{-1} 4$	O	${ }^{1 / 4}$
478	${ }^{13} 86$	2	－	8．13
$\triangle 8$ 9	囯日 7	\bigcirc	\sim	${ }_{8}^{8}$
	团88			

MB74LS139（FUJITSU
SN74LS139N

HD74LS373P (HITACHI)
HD74LS373P (HITACHI)
TL 3-STATE OUTPUTS OCTAL LATCHES

MB74LS10 (FUJITSU)
MB74LS10 (FUJITSU)
SN74LS10N (TII)
THL 3 -INPUT PoStitive nand gate
SN74LS10N (TII)
THL 3 -INPUT PoStitive nand gate
THL $3-$ INPUT PG

- TOP VIEW
THL $3-$ INPUT PG
- TOP VIEW

MB74LS126A (FUITISU)
SN74LSS $26 A N$ (TI)
TL Bus Buffer gate with 3-state output

- top view -

MB74LS175 (FUJITSU)
SN7LSTP 7 FLP (T)

HD74LS645P (HITACHI)
SN74LS645N (TI)
SN74LLSE45N (TT)
TL LIIATRRAL

- TOPCHMIT TRIGGER BUS TRANSCEIVERS WITH 3-STATE OUTPUT

Tr, Di

$\xrightarrow{\text { sotrom view }}$

MAIN BOARD

Note: The blue pattern on board layout is COMPONENT SIDE.
The gray pattern on board layout is SOLDERING SIDE.

MAIN BOARD - COMPONENT SIDE -
1-613-622-11
HB-55P/75P(AE)
HB-75B(UK)

$\mathrm{COO1}$	B-2	C066	E-3	CN1	D-2	IC31	C-3	0001	A - 1	R036	A - 2	R100	A-1
C 002	A - 2	C067	E-3	CN2	E-1	IC32	C-3	Q002	A - 1	R037	A-3	R101	A-2
COO 3	A - 3	C068	E-3	CN3	A - 1	IC33	C-3	0003	A - 1	R038	A - 3	R102	A-2
C004	A - 3	C069	A -3	CN4	C-1	IC34	C-1	Q004	A - 1	R039	A - 3	R103	A-2
$\mathrm{COO5}$	A - 3	C070	A - 3	CN5	B-1	IC35	C-1	Q005	A-1	R040	A-3	R104	A-2
C006	A - 3	C071	E-1	CN8	E-2	IC36	C-1	0006	A - 1	R041	A-3	R105	B-2
C007	A - 3	C101	A - 3	CN9	E-1	IC37	C-3	Q007	B-1	R042	A-3	R106	B-1
C008	A - 1	C102	B-1	CN10	A - 2	IC38	C-3	Q008	B-1	R043	A-3	R107	B-2
C009	A - 1	C103	B-2	CN11	B-2	IC39	D-1	Q009	A - 2	R044	A-1	R108	C-1
C010	A - 2	C104	A - 3	CN12	B-2	IC40	D-1	0010	A - 2	R045	A-1	R109	C-2
C011	A -3	C105	A -3			IC41	D-1	0011	A - 2	R046	B - 1	R110	C-2
C012	A-3	C106	A -3			IC42	D-2	0012	A-1	R047	B-1	R111	C-2
C013	A - 3	C107	A -3			IC43	D-2	Q013	A - 1	R048	B - 1	R112	C-2
C014	A - 1	C108	B - 3	D001	A - 2	IC44	D-3	Q014	B - 1	R049	B-1	R113	C-2
C015	A - 1	C109	B-3	D002	A - 3	IC45	D-3	Q015	B-1	RO50	B-1	R114	c-2
C016	A - 3	C110	B - 3	D003	A - 2	1 C 46	D-3	Q016	A-2	R051	A-1	R115	C-3
CO 17	A-3	C111	B-3	D004	B - 1	1 C 47	D-1	0017	A - 1	R052	A - 1	R116	C. 3
CO18	A-1	C112	B-3	D005	B-1	IC48	E-2	0018	A - 2	R053	A - 1	R117	C-3
C019	A - 2	C113	B-3	D006	$B-1$	IC49	D-2	Q019	A - 1	R054	A - 1	R118	C-3
CO 20	A - 1	C114	B-3	D007	B - 1	1 C 50	D-3	Q020	A - 3	R055	A-1	R119	B-2
CO21.	A - 3	C115	B-3			IC51	D-3	Q021	A-3	R056	B-1	R120	C-1
CO 22	A - 3 .	C116	B -3			IC52	D-3	0022	A-3	R057	A -1	R121	D-1
$\mathrm{CO23}$	A-3	C117	B-3			IC53	D-3	Q023	A - 2	R058	A - 2	R122	D-3
CO24	A-3	C118	B-3	DL1	A - 1	IC54	E-1	Q024	A - 2	R059	A - 2	R123	E-1
C 225	B-1	C119	B-3			IC55	E-1	Q025	A. 2	R060	A-3	R124	E-2
CO 26	A - 2	C120	B-1			IC56	E-1	Q026	C-2	R061	A - 3	R125	E-2
CO 27	A - 2	C121	B-1			IC57	E-2	0027	B-1	R062	A -3	R126	E-3
CO28	A-3	C122	C-3	IB1	B-2	IC58	E-3	0028	A - 2	R063	A-3	R127	E-3
CO29	B - 1	C123	B-3	IB2	B - 2	IC59	E-3			R064	A - 2	R128	E-3
C030	A-1	C124	C-3	IB3	D-1	IC60	E-3			$R 065$	A-3	R129	E-1
C031	A-2	C125	C-3	184	D-1	IC61	E-3			R066	A - 3	R130	E-1
C032	A - 2	C126	C-1	IB5	E-2	IC62	E-1	R001	A - 1	R067	A -2	R131	C-1
CO33	A - 3	C127	C-1	IB6	E-2	IC63	E-2	R002	A-1	R068	A-3	R132	B-1
C034	B - 1	C128	C-1			[C64	E-2	R003	A -1	R069	B-1	R133	E-2
C035	B-1	C129	C-2			IC65	E-3	R004	A - 1	R070	B-1	R134	E-1
C036	A-2	C130	C. 3			IC66	E-3	R005	A-1	R071	B-1	R135	A-3
C037	B - 1	C131	D-3	IC1	A-3	IC67	E-3	R006	A-1	R072	B-1	R136	A-3
C038	B-1	C132	D-3	1 C 2	B-3	IC68	E-3	$R 007$	A - 1	R073	B-1		
C039	B - 1	C133	D-1	IC3	B-3			R008	A-2	R074	A - 1		
CO 40	B - 2	C134	D-2	IC4	B-3			R009	A-2	R075	A-2		
C041	A -2	C135	D-2	1 C 5	B-3			R010	A-2	R076	A - 2	RY001	B-1
CO42	A-2	C136	D-3	IC6	B - 3	JW1	B-3	R011	A-2	R077	A -2		
C043	B - 1	C137	D-3	1 C 7	A-3	JW2	B-3	R012	A-2	R078	A - 2		
C044	B-1	C138	D-3	IC8	A - 3	JW3	C-3	R013	A-3	R080	B-1		
CO 45	A - 2	C139	E-1	IC9	B - 3	JW4	C-3	R014	A-3	R081	B-1	VC1	A. 3
CO46	A - 2	C140	E-1	1 ClO	B-3	JW5	C-2	RO15	A-1	R082	B-1	VC2	A-3
CO47	A - 2	C141	D-1	IC11	B-3	JW6	D-3	$R 016$	A-1	$R 083$	B-1		
C048	A-3	C142	E-3	IC12	B-3	JW7	D-2	$R 017$	A - 1	R084	B - 1		
C049	B - 1	C143	E-3	IC13	A - 2	JW8	D-2	R018	A-1	R085	A-1		
$\mathrm{CO50}$	B - 2	C144	E-3	IC14	A - 2	JW9	E-2	R019	A-1	R086	A - 1	VR001	A-1
C051	C-2	C145	E-3	IC15	A-3	JW10	E-2	RO20	A - 1	$R 087$	A - 2	VROO2	A-1
C052	B - 1	C146	E-1	IC16	B - 2	JW11	D-3	RO21	A - 1	R088	A-2	VR003	A-1
C053	C-2	C147	E-2	1 C 17	B-2	JW12	E-3	RO22	A-1	R089	B-1	VR004	A - 2
C054	C-2	C148	E-2	IC18	B-1	JW13	E-3	R023	A-2	$R 090$	B-1		
C055	C-2	C149	E-3	IC19	B-1	JW14	E-3	$R 024$	A-1	R091	A-1		
C056	C-1	C150	E-3	IC21	B-2	JW15	E-3	R025:	A-1	R092	B - 2		
C057	C-2	C151	E-3	1 C 22	B-2			R026	A-1	$R 093$	A -2	X1	A-3
C058	C-2	C152	E-3	IC23	B-2			$R 027$	A - 1	R094	A - 2		
C059	C-2	C153	E-3	IC24	B-1			R028	A-1	R095	A-2		
C060	C-2	C154	E-3	IC25	C-1	L001	A -3	R029	A-1	R096	A-2		
C061	C-2	C155	E-3	IC26	C-1	L002	A-3	R030	A-1	R097	B-1		
C062	c-3	C156	E-3	IC27	C-1	L003	A-2	R031	A - 1	R098	B-1		
C063	C-3			IC28	C-1	L004	A-2	R032	A-1	R099	A-1		
C064	C. 3			IC29	C-2	L005	B-1	R033	A - 2				
C065	D-3			1 C 30	C-2	L006	B-1	R034	A-2				
								R035	A-2				

MAIN(2/2)

FUSE, LED, POWER, TRANS, 5V, 12V BOARD

HB-55P/75P/75B(AE/UK)

KEYBOARD (HB-55P)

CHAPTER 6

ALIGNMENT

6-1. HB-55P/75P/75B ADJUSTMENT

Note: Adjustment should be performed in the order mentioned below.

6-1-1. VCO Phase Adjustment

Equipment Required:	Digital Volt Meter
Check Point	: TP1 (Junction Point of R37 and R38)/
	MAIN
Specification	$: 7.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$
Adjustment	$:$ VC1/MAIN

6-1-2. SUB Carrier Frequency Adjustment
Equipment Required: FREQUENCY COUNTER
Check Point : TP2 (Junction Point of C28 and C47)/
Specification $: 4.433618 \mathrm{MHz} \pm 10 \mathrm{~Hz}$
Adjustment
6-1-3. Video Output Level Adjustment
Equipment Required: OSCILLOSCOPE

(1) Terminated pin 2 of CN1 (AUDIO/ VIDEO OUTPUT)/POWER between GND with 75Ω, or connect the Monitor TV (75Ω INPUT) to CN1/ POWER. But, do not connect to CN3 (RGB OUTPUT)/MAIN.
(2) Example

BASIC will have the list programmed and run.
10 COLOR~15, 15
20 END

6-2. HB-75P/75B RGB ADJUSTMENT

Note 1: After adjusting step 6-1, the following adjustment should be performed.
Note 2: Adjustment should be performed by terminating each test point between GND with 75Ω or, connect the Monitor TV (75Ω INPUT) to CN3 (RGB OUTPUT)/MAIN. But do not connect to CN1 (AUDIO/VIDEO OUTPUT)/
BASIC will have the list programmed and run 10 COLOR - 15, 15 20 END
6-2-1. Blue Output Level Adjustment

Adjustment VR1/MAIN
6-2-2. Red Output Level Adjustment

Check Point	$:$ TP5 (pin 15 of CN3 or collector of
Q3)/MAIN	
Specification	$: \mathrm{A}=0.7 \mathrm{~V} \pm 0.1 \mathrm{Vp}-\mathrm{p}$

6-2-3. Green Output Level Adjustment
Equipment Required: OSCILLOSCOPE
Check Point : TP6 (pin 11 of CN3 or collector of 05)/MAIN
Specification $\quad: A=0.7 \mathrm{~V} \pm 0.1 \mathrm{Vp}-\mathrm{p}$

CHAPTER 7

REPAIR PARTS AND FIXTURE

7-1. EXPLODED VIEW

MAIN ASSEMBLY (HB-55P)

No.	Part No.	Description
1	$A-8050-100-A$	MOUNTED CB. MAIN
2	A-8050-102-A	MOUNTED CB, POWER (WITH 5V, 12V BOARD)
3	X-4604-316-1	CABINET (UPPER) ASSY
	1-447-939-11	TRANSFORMER, POWER
5	1-464-382-11	KEYBOARD UNIT

$\mathbb{C} 6$ 1-534-817-XX CORD, POWER, EULO PLUG

¢ 7	1-553-318-00	SWITCH, PUSH (AC POWER)(1 KEY)
8	1-613-624-11	PC BOARD, 5 V
9	1-613-625-11	PC BOARD. 12 V
10	1-613-627-11	PC BOARD, FUSE
11	1-613-628-11	PC BOARD. TRANSFORMER
$\geqslant 12$	3-703-244-00	BUSHING, CORD
13	3-706-165-00	SCREW
14	4-604-301-00	BUTTON, POWER SWITCH
15	4-604-302-00	LID, CARTRIDGE
16	4-604-303-00	SPRING
17	4-604-306-31	PLATE, ORNAMENTAL
18	4-604-332-01	LABEL, CONTROL
19	4-604-335-01	PLATE, BLIND (A)
20	4-604-337-01	PLATE, BLIND (C)
21	4-604-386-01	COVER, CARTRIDGE
22	4-604-394-02	PLATE. BOTTOM
23	4-605-103-01	LABEL. CAUTION
24	4-605-131-01	INSULATOR, FUSE, PC BOARD
25	4-605-132-01	INSULATOR. TRANSFORMER PCB
26	4-812-134-11	RIVET NYLON, 3.5
27	4-860-711-00	FELT
28	4-864-307-00	RING
29	4-875-726-00	SHEET, INSULATING
30	4-886-557-00	CLIP (B), IC
31	4-886-865-00	CUSHION (A)

Parts printed in Bold-Face type are normally stocked for repiacement purposes. The remaining parts shown in this manual are not normally required for routine service work. Orders for parts not shown in Bold-Face type will be processed ton wih no pat nuer andor no
3. Iter with no part number and/or no description are not stocked because thev are seidom required for routine service.

MAIN ASSEMBLY (HB-75P/75B)		
No.	Part No.	Description
(1) 1		
2	A-8050-102-A	MOUNTED CB. POWER (75P) (WITH 5V. 12V BOARD
	A-8050-103-A	MOUNTED CB, POWER (75B) (WITH 5V. 12V BOARD
3	X-4604-313-1	CABINET (UPPER) ASSY (75B)
	X-4604-314-1	CABINET (UPPER) ASSY (75P)
14 4	1-447-939-11	TRANSFORMER, POWER
5	1-464-381-11	KEYBOARD UNIT
$A^{8} 6 \quad 1-534-817-x X$		CORD POWER, EULO PLUG (75P)
$\mathrm{St}^{4} 7$ 1-551-884-00		CORD, POWER (75B)
¢ 8	1-553-318-00	SWITCH, PUSH (AC POWER)
9	1-613-624-11	PC BOARD. 5 V
10	1-613-625-11	PC BOARD. 12 V
11	1-613-627-11	PC BOARD, FUSE
12	1-613-628-11	PC BOARD. TRANS
13	3-701-690-00	LABEL (MADE IN JAPAN) (75B)
14	3-703-082-21	LABEL CAUTION (75B)
¢ 15	3-703-244-00	BUSHING, CORD
16	3-706-165-00	SCREW
17	4-604-301-00	BUTTON, POWER SWITCH
18	4-604-302-00	LID, CARTRIDGE
19	4-604-303-00	SPRING
20	4-604-306-41	PLATE, ORNAMENTAL (75P)
	4-604-306-51	PLATE, ORNAMENTAL (75B)
21	4-604-332-01	LABEL, CONTROL
22	4-604-335-01	PLATE, BLIND (A)
23	4-604-337-01	PLATE, BLIND (C)
24	4-604-355-01	REINFORCEMENT
25	4-604-356-02	CUSHION. RUBBER
26	4-604-382-02	PLATE, BOTTOM
27	4-604-386-01	COVER, CARTRIDGE
28	4-605-103-01	LABEL, CAUTION
29	4-605-131-01	INSULATOR, FUSE PC BOARD INSULATOR. TRANSFORMER PCB
30	4-605-132-01	
31	4-812-134-11	RIVET NYLON, 3.5
32	4-860-711-00	FELT
33	4-864-307-00	RING
34	4-875-726-00	SHEET, INSULATING
35	4-886-557-00	CLIP (B), IC
36	4-886-865-00	CUSHION(A)

7-3

KEYBOARD (HB-55P)

No.	Parts No.	Description	No.	Parts No.	Description
50	9-983-716-01	KEY TOP (1) F1	95	9-985-289-01	KEY TOP (3) A
51	9-983-717-01	KEY TOP (1) F2	96	9-985-290-01	KEY TOP (3) S
52	9-983-718-01	KEY TOP (1) F3	97	9-985-291-01	KEY TOP (3) D
53	9-983-719-01	KEY TOP (1) F4	98	9-985-292-01	KEY TOP (3) F
54	9-983-720-01	KEY TOP (1) F5	99	9-985-293-01	KEY TOP (3) G
55	9-983-721-01	KEY TOP (2) HOME	100	9-985-294-01	KEY TOP (3) H
56	9-983-722-01	KEY TOP (2) STOP	101	9-985-295-01	KEY TOP (3) J
57	9-983-723-01	KEY TOP (2) INS	102	9-985-296-01	KEY TOP (3) K
58	9-983-724-01	KEY TOP (2) DEL	103	9-985-297-01	KEY TOP (3) L
59	9-983-725-01	KEY TOP (2) RESET	104	9-985-298-01	KEY TOP (3) ;
60	9-983-726-01	KEY TOP (3) ESC	105	9-985-299-01	KEY TOP (3) ${ }^{\text {' }}$
61	9-983-727-01	KEY TOP (4) CTRL	106	9-985-300-01	KEY TOP (3) $£$
62	9-983-728-01	KEY TOP (5) CAP	107	9-985-301-01	KEY TOP (3) Z
63	9-983-729-01	KEY TOP (4) SHIFT	108	9-985-302-01	KEY TOP (3) X
64	9-983-730-01	KEY TOP (4) TAB	109	9-985-303-01	KEY TOP (3) C
65	9-983-731-01	KEY TOP (4) BS	110	9-985-304-01	KEY TOP (3) V
66	9-983-733-01	KEY TOP (4) RETURN	111	9-985-305-01	KEY TOP (3) B
67	9-983-735-01	KEY TOP (4) SELECT	112	9-985-306-01	KEY TOP (3) N
68	9-985-313-01	KEY TOP (4) CODE	113	9-985-307-01	KEY TOP (3) M
69	9-983-734-01	KEY TOP (4) GRAPH	114	9-985-308-01	KEY TOP (3) .
70	9-985-264-01	KEY TOP (3) 1	115	9-985-309-01	KEY TOP (3)
71	9-985-265-01	KEY TOP (3) 2	116	9-985-310-01	KEY TOP (3) /
72	9-985-266-01	KEY TOP (3) 3	117	9-985-311-01	KEY TOP (3)
73	9-985-267-01	KEY TOP (3) 4	118	9-983-784-01	KEY TOP (6) SPACE
74	9-985-268-01	KEY TOP (3) 5	119	9-983-785-01	KEY TOP (7) CURSOR
75	9-985-269-01	KEY TOP (3) 6	120	9-983-786-01	SPACE BAR
76	9-985-270-01	KEY TOP (3) 7	121	9-983-787-01	CURSOR BAR
77	9-985-271-01	KEY TOP (3) 8	122	9-983-788-01	FRAME, KEYBOARD
78	9-985-272-01	KEY TOP (3) 9	123	9-983-789-01	BAR HOLDER
79	9-985-273-01	KEY TOP (3) 0	124	4-605-117-01	SPRING
80	9-985-274-01	KEY TOP (3) -			
81	9-985-275-01	KEY TOP (3) =			
82	9-985-276-01	KEY TOP (3) \}			
83	9-985-277-01	KEY TOP (3) \mathbf{Q}			
84	9-985-278-01	KEY TOP (3) W			
85	9-985-279-01	KEY TOP (3) E			
86	9-985-280-01	KEY TOP (3) R			
87	9-985-281-01	KEY TOP (3) T			
88	9-985-282-01	KEY TOP (3) Y			
89	9-985-283-01	KEY TOP (3) U			
90	9-985-284-01	KEY TOP (3) I			
91	9-985-285-01	KEY TOP (3) O			
92	9-985-286-01	KEY TOP (3) P			
93	9-985-287-01	KEY TOP (3) [
94	9-985-288-01	KEY TOP (3)]			
NOTE:					
	The shaded and \triangle-marked components are critical to safety. Replace only with same components as specified.				
2. Parts printed in Bold-Face type are normally stocked for replacement purposes. The remaining parts shown in this manual are not normally required for routine service work. Orders for parts not shown in Bold-Face type will be processed, but allow for additional delivery time.					
3. Item with no part number and/or no description are not stocked because they are seldom required for routine service.					
HB-5	P(AE)				

KEYBOARD (HB-75P/75B)

No.	Parts No.	Description	No.	Parts No.	Description
50	9-983-716-01	KEY TOP (1) F1	95	9-985-236-01	KEY TOP (3)]
51	9-983-717-01	KEY TOP (1) F2	96	9-985-237-01	KEY TOP (3) A
52	9-983-718-01	KEY TOP (1) F3	97	9-985-238-01	KEY TOP (3) S
53	9-983-719-01	KEY TOP (1) F4	98	9-985-239-01	KEY TOP (3) D
54	9-983-720-01	KEY TOP (1) F5	99	9-985-240-01	KEY TOP (3) F
55	9-983-721-01	KEY TOP (2) HOME	100	9-985-241-01	KEY TOP (3) G
56	9-983-722-01	KEY TOP (2) STOP	101	9-985-242-01	KEY TOP (3) H
57	9-983-723-01	KEY TOP (2) INS	102	9-985-243-01	KEY TOP (3) J
58	9-983-724-01	KEY TOP (2) DEL	103	9-985-244-01	KEY TOP (3) K
59	9-983-725-01	KEY TOP (2) RESET	104	9-985-245-01	KEY TOP (3) L
60	9-984-250-01	KEY TOP (4) ESC	105	9-985-246-01	KEY TOP (3) :
61	9-984-251-01	KEY TOP (5) TAB	106	9-985-247-01	KEY TOP (3) ${ }^{\text {c }}$
62	9-984-252-01	KEY TOP (6) CTRL	107	9-985-248-01	KEY TOP (3) E
63	9-984-253-01	KEY TOP (7) SHIFT	108	9-985-249-01	KEY TOP (3) Z
64	9-984-254-01	KEY TOP (8) CAP	109	9-985-250-01	KEY TOP (3) X
65	9-985-314-01	KEY TOP (4) CODE	110	9-985-251-01	KEY TOP (3) C
66	9-984-256-01	KEY TOP (5) BS	111	9-985-252-01	KEY TOP (3) V
67	9-984-257-01	KEY TOP (9) RETURN	112	9-985-253-01	KEY TOP (3) B
68	9-984-258-01	KEY TOP (10) SHIFT	113	9-985-254-01	KEY TOP (3) N
69	9-984-255-01	KEY TOP (11) GRAPH	114	9-985-255-01	KEY TOP (3) M
70	9-984-260-01	KEY TOP (11) SELECT	115	9-985-256-01	KEY TOP (3) .
71	9-985-212-01	KEY TOP (3) 1	116	9-985-257-01	KEY TOP (3)
72	9-985-213-01	KEY TOP (3) 2	117	9-985-258-01	KEY TOP (3) /
73	9-985-214-01	KEY TOP (3) 3	118	9-985-259-01	KEY TOP (3)
74	9-985-215-01	KEY TOP (3) 4	119	9-985-260-01	KEY TOP (11) SPACE
75	9.985-216-01	KEY TOP (3) 5	120	9-984-310-01	KEY TOP (12) CURSOR
76	9-985-217-01	KEY TOP (3) 6	121	9-984-312-01	CURSOR BAR (1)
77	9-985-218-01	KEY TOP (3) 7	122	9-984-313-01	CURSOR BAR (2)
78	9-985-219-01	KEY TOP (3) 8	123	9-985-261-01	SPACE BAR
79	9-985-220-01	KEY TOP (3) 9	124	9-984-315-01	FRAME, KEYBOARD
80	9-985-221-01	KEY TOP (3) 0	125	9-984-316-01	bar holder
81	9-985-222-01	KEY TOP (3) -	126	9-984-341-01	SPRING
82	9-985-223-01	KEY TOP (3) =	127	4-605-117-01	SPRING
83	9-985-224-01	KEY TOP (3) \}			
84	9-985-225-01	KEY TOP (3) Q			
85	9-985-226-01	KEY TOP (3) W			
86	9-985-227-01	KEY TOP (3) E			
87	9-985-228-01	KEY TOP (3) R			
88	9-985-229-01	KEY TOP (3) T			
89	9-985-230-01	KEY TOP (3) Y			
90	9-985-231-01	KEY TOP (3) U			
91	9-985-232-01	KEY TOP (3) I			
92	9-985-233-01	KEY TOP (3) O			
93	9-985-234-01	KEY TOP (3) P			
94	9-985-235-01	KEY TOP (3) [
NOTE:					
	The shaded and marked components are critical to safety. Replace only with same components as specified.				
2. Parts printed in Bold-Face type are normally stocked for replacement purposes. The remaining parts shown in this manual are not normally required for routine service work. Orders for parts not shown in Bold.Face type will be processed. but allow for additional delivery time.					
	with no part number dom required for rout	d/or no description are not stoc e service.			

7-2. ELECTRICAL PARTS LIST

Ref. No.	Parts No.	Description
MAIN BOARD		
A-8050-098-A \approx MOUNTED CB, MAIN (75P/75B)		
$¢_{\text {¢ }}$		
	4-886-557-00	CLIP (B), IC
C1	1-123-332-00	ELECT 47 20\% 25V
C2	1-123-379-00	ELECT 0.47 20\% 100V
C3	1-123-332-00	ELECT 47 20\% 25V
C4	1-123-298-00	ELECT 470 20\% 6.3V
C5	1-123-332-00	ELECT 47 20\% 25V
C6	1-123-332-00	ELECT 47 20\% 25V
C7	1-123-332-00	ELECT 47 20\% 25V
C8	1-123-356-00	ELECT 10 20\% 50V (75P/75B)
C9	1-123-356-00	ELECT 10 20\% 50V (75P/75B)
C10	1-123-310-00	ELECT 470 20\% 10V
C11	1-102-935-00	CERAMIC 2P 50V
C12	1-102-760-00	CERAMIC 68P 5\% 50V
C13	1-102-508-00	CERAMIC 10P 50V
C14	1-123-356-00	ELECT 10 20\% 50V (75P/75B)
C15	1-108-603-00	MYLAR $0.15 \% 50 \mathrm{~V}$
C016	1-102-760-00	CERAMIC 68P 5\% 50V
C017	1-102-074-00	CERAMIC $0.0015 \% 50 \mathrm{~V}$
C018	1-123-356-00	ELECT 10 20\% 50V (75P/75B)
C019	1-123-356-00	ELECT 10 20\% 50V
C020	1-108-603-00	MYLAR $0.15 \% 50 \mathrm{~V}$
C021	1-108-587-00	MYLAR 0.022 5\% 50V
C022	1-123-379-00	ELECT 0.47 20\% 100V
C023	1-102-905-00	CERAMIC 130P 5\% 50V
C024	1-108-587-00	MYLAR 0.022 5\% 50V
CO25	1-108-587-00	MYLAR 0.022 5\% 50V
C026	1-102-852-00	CERAMIC 47P 5\% 50V
C027	1-123-307-00	ELECT 100 20\% 10V
C028	1-102-936-00	CERAMIC 3P 50V
C029	1-130-640-00	FILM 0.47 5\% 50V
C030	1-123-369-00	ELECT 4.7 20\% 63V
C031	1-123-330-00	ELECT 22 20\% 25V
C032	1-108-603-00	MYLAR $0.15 \% 50 \mathrm{~V}$
C033	1-102-514-00	CERAMIC 22P 5\% 50V
C034	1-123-332-00	ELECT 47 20\% 25V
C035	1-108-603-00	MYLAR 0.1 5\% 50V

Ref. No.	Parts No.	Description
C36	1-108-603-00	MYLAR 0.1 5\% 50V
C37	1-102-074-00	CERAMIC $0.0015 \% 50 \mathrm{~V}$
C38	1-108-603-00	MYLAR $0.15 \% 50 \mathrm{~V}$
C39	1-108-587-00	MYLAR 0.022 5\% 50V
C40	1-102-518-00	CERAMIC 33P 5\% 50V
C41	1-123-369-00	ELECT 4.7 20\% 63V
C42	1-123-369-00	ELECT 4.7 20\% 63V
C43	1-102-074-00	CERAMIC 0.001 10\% 50V
C44	1-123-332-00	ELECT 47 20\% 25V
C45	1-123-369-00	ELECT 4.7 20\% 63V
C46	1-102-518-00	CERAMIC 33P 5\% 50V
C47	1-102-518-00	CERAMIC 33P 5\% 50V
C48	1-102-514-00	CERAMIC 22P 5\% 50V
C49	1-123-332-00	ELECT 47 20\% 25V
C50		
C51	1-108-587-00	MYLAR $0.0225 \% 50 \mathrm{~V}$
C52	1-123-369-00	ELECT 4.7 20\% 63V
C53	1-108-587-00	MYLAR 0.022 5\% 50V
C54	1-123-332-00	ELECT 47 20\% 25V
C55	1-123-332-00	ELECT 47 20\% 25V
C56	1-108-579-00	MYLAR 0.01 5\% 50V
C57	1-123-308-00	ELECT 220 20\% 10V
C58	1-108-587-00	MYLAR 0.022 5\% 50V
C59	1-123-332-00	ELECT 47 20\% 25V
C60	1-123-332-00	ELECT 47 20\% 25V
C61	1-123-369-00	ELECT 4.7 20\% 63V
C62	1-123-369-00	ELECT 4.7 20\% 63V
C63	1-123-369-00	ELECT 4.7 20\% 63V
C64	1-123-369-00	ELECT 4.7 20\% 63V
C66	1-123-332-00	ELECT 47 20\% 25V (55P)
C67	1-123-332-00	ELECT 47 20\% 25V (55P)
C68	1-123-332-00	ELECT 47 20\% 25V
C69	1-161-974-00	CERAMIC 0.1 16V
C70	1-161-974-00	CERAMIC 0.1 16V
C73	1-123-298-00	ELECT 470 20\% 6.3V
C79	1-102-514-00	CERAMIC 22P 5\% 50V
C101	1-162-113-00	CERAMIC $0.01 \quad 30 \% 16 \mathrm{~V}$
C102	1-162-113-00	CERAMIC 0.01 30\% 16V
C103	1-162-113-00	CERAMIC 0.01 30\% 16V
C104	1-162-113-00	CERAMIC 0.01 30\% 16V
C105	1-162-113-00	CERAMIC 0.01 30\% 16V
C106	1-162-113-00	CERAMIC $0.01 \quad 30 \% 16 \mathrm{~V}$
C107	1-162-113-00	CERAMIC $0.01 \quad 30 \% 16 \mathrm{~V}$
C108	1-162-113-00	CERAMIC $0.01 \quad 30 \% 16 \mathrm{~V}$
C109	1-162-113-00	CERAMIC 0.01 30\% 16V

NOTE:

1. The shaded and \triangle-marked components are critical to safety.
Replace only with same components as specified.

Ref. No.	Parts No.	Description			
C110	1-162-113-00	CERAMIC	0.01	30\%	16 V
C111	1-162-113-00	CERAMIC	0.01	30\%	16V
C112	1-162-113-00	CERAMIC	0.01	30\%	16 V
C113	1-162-113-00	CERAMIC	0.01	30\%	16V
C114	1-162-113-00	CERAMIC	0.01	30\%	16 V
C115	1-162-113-00	CERAMIC	0.01	30\%	16V
C116	1-162-113-00	CERAMIC	0.01	30\%	16 V
C117	1-162-113-00	CERAMIC	0.01	30\%	16 V
C118	1-162-113-00	CERAMIC	0.01	30\%	16 V
C119	1-162-113-00	CERAMIC	0.01	30\%	16 V
C120	1-162-113-00	CERAMIC	0.01	30\%	16V
C121	1-162-113-00	CERAMIC	0.01	30\%	16V
C122	1-162-113-00	CERAMIC	0.01	30\%	16V
C123	1-162-113-00	CERAMIC	0.01	30\%	16V
C124	1-162-113-00	CERAMIC	0.01	30\%	16 V
C125	1-162-113-00	CERAMIC	0.01	30\%	16V
C126	1-162-113-00	CERAMIC	0.01	30\%	16V
C127	1-162-113-00	CERAMIC	0.01	30\%	16 V
C128	1-162-113-00	CERAMIC	0.01	30\%	16 V
C129	1-162-113-00	CERAMIC	0.01	30\%	16 V
C130	1-162-113-00	CERAMIC	0.01	30\%	16V
C131	1-162-113-00	CERAMIC	0.01	30\%	16 V
C132	1-162-113-00	CERAMIC	0.01	30\%	16 V
C133	1-162-113-00	CERAMIC	0.01	30\%	16 V
C134	1-162-113-00	CERAMIC	0.01	30\%	16 V
C135	1-162-113-00	CERAMIC	0.01	30\%	16 V
C136	1-162-113-00	CERAMIC	0.01	30\%	16 V
C137	1-162-113-00	CERAMIC	0.01	30\%	16 V
C138	1-162-113-00	CERAMIC	0.01	30\%	16 V
C139	1-162-113-00	CERAMIC	0.01	30\%	16V
C140	1-162-113-00	CERAMIC	0.01	30\%	16V
C141	1-162-113-00	CERAMIC	0.01	30\%	16V
C142	1-162-113-00	CERAMIC	0.01	30\%	16 V (55P)
C143	1-162-113-00	CERAMIC	0.01	30\%	16 V (55P)
C144	1-162-113-00	CERAMIC	0.01	30\%	16 V (55P)
C145	1-162-113-00	CERAMIC	0.01	30\%	16 V (55P)
C146	1-162-113.00	CERAMIC	0.01	30\%	16 V
C147	1-162-113-00	CERAMIC	0.01	30\%	16V
C148	1-162-113-00	CERAMIC	0.01	30\%	16 V
C149	1-162-113-00	CERAMIC	0.01	30\%	16 V
C150	1-162-113-00	CERAMIC	0.01	30\%	16 V
C151	1-162-113-00	CERAMIC	0.01	30\%	16V
C152	1-162-113-00	CERAMIC	0.01	30\%	16 V
C153	1-162-113-00	CERAMIC	0.01	30\%	16 V
C154	1-162-113-00	CERAMIC	0.01	30\%	16 V
C155	1-162-113-00	CERAMIC	0.01	30\%	16 V
C156	1-162-113-00	CERAMIC	0.01	30\%	16 V
NOTE:					
1.	The shaded and $\$$-marked components are critical to safety. Replace only with same components as specified.				

Ref. No.	Parts No.	Description
CN1	1-562-383-00	50P
CN2	1-562-626-11	50P
CN3	1-561-534-00	21P (75P/75B)
CN4	1-564-373-11	14P
CN5	1-561-468-00	8P
CN8	1-564-372-00	9 P
CN9	1-564-372-00	9P
CN10	1-564-674-11	8P
CN11	1-564-376-11	13 P
CNT 2	1-564-377-11	9 P
D1	8-719-101-49	RD5.1EL1
D2	8-719-901-59	KV1320
D3	8-719-815-55	151555
D4	8-719-815-55	$1 \mathrm{S1555}$
D5	8-719-815-55	1S1555
D6	8-719-200-02	10E-2
D7	8-719-815-55	1S1555
DL1	1-415-374-11	DELAY LINE (Y-DL)
1 C 1	8-759-900-04	SN74LS04N
IC2	8-759-908-94	TMS9929ANL
IC3	8-759-101-91	UPD416C-2
IC4	8-759-101-91	UPD416C-2
IC5	8-759-101-91	UPD416C-2
IC6	8-759-101-91	UPD416C-2
IC7	8-757-925-00	CX-7925A
IC8	8-759-900-74	SN74LS74AN
IC9	8-759-101-91	UPD416C-2
IC10	8-759-101-91	UPD416C-2
IC11	8-759-101-91	UPD416C-2
IC12	8-759-101-91	UPD416C-2
IC13	8-759-938-89	LM1889N
IC14	8-759-140-66	UPD4066BC
IC15	8-759-900-74	SN74LS74AN
IC16	8-759-182-55	UPD8255AC-5
1 C 17	8-759-901-53	SN74LS153N
1 C 18	8-759-901-39	SN74LS139N
1 C 19	8-759-131-11	UPC311C
IC21	8-759-900-74	SN74LS74AN

2. Parts printed in Bold-Face type are normally stocked for replacement purposes. The remaining parts shown in this manual are not normally required for routine service work. Orders for parts not shown in Bold-Face type will be processed, but allow for additional delivery time.

Ref. No.	Parts No.	Description	Ref. No.	Parts No.	Description
IC22	8-759-901-45	SN74LS145N	IC62	8-759-901-57	SN74LS157N
IC23	8-759-901-39	SN74LS139N	IC63	8-759-901-57	SN74LS157N
IC24	8-759-900-32	SN74LS32N	IC64	8-759-900-09	SN74LS09N
IC25	8-759-900-86	SN74LS86N	IC65	8-759-905-75	MSM3764-15RS (75P/75B)
IC26	8-759-900-04	SN74LS04N		8-759-101-91	UPD416C-2 (55P)
			IC66	8-759-905-75	MSM3764-15RS (75P/75B)
IC27	8-759-900-00	SN74LSOON		8-759-101-91	UPD416C-2 (55P)
IC28	8-759-900-02	SN74LS02N			
IC29	8-759-900-04	SN74LS04N	IC67	8-759-905-75	MSM3764-15RS (75P/75B)
IC30	8-759-900-27	SN74LS27N		8-759-101-91	UPD416C-2 (55P)
IC31	8-759-901-75	SN74LS175N	IC68	8-759-905-75	MSM3764-15RS (75P/75B)
				8-759-101-91	UPD416C-2 (55P)
IC32	8-759-900-08	SN74LS08N			
IC33	8-759-901-26	SN74LS126AN			
IC34	8-759-900-74	SN74LS74AN			
IC35	8-759-900-74	SN74LS74AN	L1	1-408-413-00	22
IC36	8-759-900-11	SN74LS11N	12	1-410-222-11	8.2
			L3	1-408-411-00	15
IC37	8-759-900-08	SN74LS08N	L4	1-408-416-00	39
IC38	8-759-900-04	SN74LS04N	L5	1-408-420-00	82
IC39	8-759-903-73	SN74LS373N	L6	1-408-420-00	82
IC40	8-759-906-45	SN74LS645N			
IC41	8-759-916-80	LH0080A			
IC42	8-759-915-71	MSM38256-70RS	01	8-729-612-77	2SA1027R (75P/75B)
IC43			02	8-729-663-47	2SC1364 (75P/75B)
IC44	8-759-915-23	MSM38128A-77RS	03	8-729-612-77	2SA1027R (75P/75B)
$1 \mathrm{C45}$	8-759-900-10	SN74LS10N	04	8-729-663-47	2SC1364 (75P/75B)
IC46	8-759-900-32	SN74LS32N	05	8-729-612-77	2SA1027R (75P/75B)
IC47	8-759-903-67	SN74LS367N	06	8-729-663-47	2SC1364 (75P/75B)
IC48	8-759-908-60	AY-3-8910	07	8-729-663-47	2SC1364 (75P/75B)
IC49	8-759-901-57	SN74LS157N	08	8-729-100-13	2SC2001
IC50	8-759-900-74	SN74LS74AN	09	8-729-663-47	2SC1364
IC51	8-759-900-74	SN74LS74AN	010	8-729-663-47	2SC1364
IC52	8-759-900-02	SN74LSO2N	011	8-729-612-77	2SA1027R
IC53	8-759-900-27	SN74LS27N	012	8-729-663-47	2SC1364
IC54	8-759-903-67	SN74LS367N	013	8-729-663-47	2SC1364
IC55	8-759-903-67	SN74LS367N	014	8-729-663-47	2SC1364 (75P/75B)
IC56	8-759-903-67	SN74LS367N	015	8-729-663-47	2SC1364
IC57	8-759-901-57	SN74LS157N	016	8-729-663-47	2SC1364
IC58	8-759-905-75	MSM3764-15RS (75P/75B)	017	8.729-612-77	2SA1027R
	8-759-101-91	UPD416C-2 (55P)	018	8-729-663-47	2SC1364
IC59	8-759-905-75	MSM3764-15RS (75P/75B)	019	8-729-663-47	2SC1364
	8-759-101-91	UPD416C-2 (55P)	020	8-729-663-47	2SC1364
IC60	8-759-905-75	MSM3764-15RS (75P/75B)			
	8-759-101-91	UPD416C-2 (55P)	021	8-729-203-04	2Sк30A
IC61	8-759-905-75	MSM3764-15RS (75P/75B)	022	8-729-663-47	2SC1364
	8-759-101-91	UPD416C-2 (55P)	023	8-729-364-12	2SC641K
			024	8-729-364-12	2SC641K
			025	8-729-663-47	2SC1364

NOTE:

1. The shaded and 1 -marked components are critical to safety.
Replace only with same components as specified.
2. Parts printed in Bold-Face type are normally stocked for replacement purposes. The remaining parts shown in this manual are not normally required for routine service work. Orders for parts not shown in Bold-Face type will be processed, but allow for additional delivery time.

Ref. No.	Parts No.	Description		Ref. No.	Parts No.	Description	
R61	1-247-815-00	CARBON	220 5\% 1/6W	R106	1-247-855-00	CARBON	10K 5\% 1/6W
R62	1-247-851-00	CARBON	6.8K 5\% 1/6W	R107	1-247-831-00	CARBON	1K 5\% 1/6W
R63	1-247-847-00	CARBON	4.7K 5\% 1/6W	R108	1-247-841-00	CARBON	2.7K 5\% 1/6W
R64	1-247-837-00	CARBON	1.8K 5\% 1/6W	R109	1-247-799-00	CARBON	47 5\% 1/6W
R65	1-247-849-00	CARBON	5.6K 5\% 1/6W	R110	1-247-855-00	CARBON	10K 5\% 1/6W
$R 66$	1-247-849-00	CARBON	5.6K 5\% 1/6W	R111	1-247-819-00	CARBON	330 5\% 1/6W
R67	1-247-855-00	CARBON	10K 5\% 1/6W	R112	1-247-879-00	CARBON	100K 5\% 1/6W
R68	1-247-849-00	CARBON	5.6K 5\% 1/6W	R113	1-247-871-00	CARBON	47K 5\% 1/6W
				R114	1-247-863-00	CARBON	22K 5\% 1/6W
¢18 R69	1-247-239-00.	CARBON	910 5\% 1/2W	R115	1-247-855-00	CARBON	10K 5\% 1/6W
R70	1-247-863-00	CARBON	5\% 1/6W	R116	1-247-831-00	CARBON	1K 5\% 1/6W
				R117	1-247-863-00	CARBON	22K 5\% 1/6W
R71	1-247-863-00	CARBON	22K 5\% 1/6W	R118	1-247-871-00	CARBON	47K 5\% 1/6W
R72	1-247-863-00	CARBON	22K 5\% 1/6W	R119	1-247-831-00	CARBON	1K 5\% 1/6W
R73	1-247-815-00	CARBON	2205% 1/6W	R120	1-247-841-00	CARBON	2.7K 5\% 1/6W
R74	1-247-871-00	CARBON	47K 5\% 1/6W				
R75	1-247-831-00	CARBON	1K 5\% 1/6W	R121	1-247-841-00	CARBON	2.7K 5\% 1/6W
				R122	1-247-791-00	CARBON	22 5\% 1/6W
R76	1-247-831-00	CARBON	1K 5\% 1/6W	R123	1-247-841-00	CARBON	2.7K 5\% 1/6W
R77	1-247-879-00	CARBON	100K 5\% 1/6W	R124	1-247-841-00	CARBON	2.7K 5\% 1/6W
R78	1-247-879-00	CARBON	100K 5\% 1/6W	R125	1-247-841-00	CARBON	2.7K 5\% 1/6W
R79	1-247-843-00	CARBON	3.3K 5\% 1/6W				2.7K 5\% 1/6W
R80	1-247-783-00	CARBON	10 5\% 1/6W	R126	1-247-791-00	CARBON	22 5\% 1/6W
				R127	1-247-791.00	CARBON	22 5\% 1/6W
R81	1-247-821-00	CARBON	390 5\% 1/6W	R128	1-247-791-00	CARBON	22 5\% 1/6W
R82	1-247-859-00	CARBON	15K 5\% 1/6W	R129	1-247-841-00	CARBON	2.7K 5\% 1/6W
R83	1-247-839-00	CARBON	2.2K 5\% 1/6W	R130	1-247-855-00	CARBON	10K 5\% 1/6W
R84	1-247-841-00	CARBON	2.7K 5\% 1/6W				
R85	1-247-831-00	CARBON	1K 5\% 1/6W	R131	1-247-839-00	CARBON	2.2K 5\% 1/6W
				R132	1-247-821-00	CARBON	390 5\% 1/6W
R86	1-247-833-00	CARBON	1.2K 5\% 1/6W	R133	1-247-841-00	CARBON	2.7K 5\% 1/6W
R87	1-247-843-00	CARBON	3.3K 5\% 1/6W	R134	1-247-841-00	CARBON	2.7K 5\% 1/6W
R88	1-247-849-00	CARBON	5.6K 5\% 1/6W	R135	1-247-887-00	CARBON	220K 5\% 1/6W
R89	1-247-819-00	CARBON	330 5\% 1/6W	R136	1-247-863-00	CARBON	22K 5\% 1/6W
R90	1-247-795-00	CARBON	33 5\% 1/6W				
R91	1-247-831-00	CARBON	1K 5\% 1/6W				
R92	1-247-817-00	CARBON	270 5\% 1/6W	RY1	1-515-520-00	RELAY	
R93	1-247-821-00	CARBON	390 5\% 1/6W				
R94	1-247-831-00	CARBON	1K 5\% 1/6W				
R95	1-247-819-00	CARBON	330 5\% 1/6W				
				VC1	1-141-227-00	TRIMAR,	CERAMIC 20P
R96	1-247-849-00	CARBON	5.6K 5\% 1/6W	VC2	1-141-227-00	TRIMAR,	CERAMIC 20P
R97	1-247-847-00	CARBON	4.7K 5\% 1/6W				
R98	1-247-831-00	CARBON	1K 5\% 1/6W				
R99	1-247-823-00	CARBON	470 5\% 1/6W				
R100	1-247-837-00	CARBON	1.8K 5\% 1/6W	VR1	1-226-710-00	ADJ, SOLI	D 10K (75P/75B)
				VR2	1-226-710-00	ADJ, SOLI	D 10K (75P/75B)
R102	1-247-837-00	CARBON	$\begin{array}{lll}1.8 K & 5 \% & 1 / 6 W \\ \mathbf{2 . 7 K} & 5 \% & 1 / 6 W\end{array}$	VR3	1-226-710-00	ADJ, SOLI	D 10K (75P/75B)
R103	1-247-835-00	CARBON	$\begin{array}{lll}\text { 2.7K } & 5 \% & 1 / 6 W \\ 1.5 K & 5 \% & 1 / 6 W\end{array}$	VR4	1-226-707-00	ADJ, SOLI	D 1K
R104	1-247-855-00	CARBON	10K 5\% 1/6W				
R105	1-247-831-00	CARBON	1K 5\% 1/6W				
				X1	1-567-161-00	CRYSTAL,	10.73868 MHz

NOTE:

1. The shaded and \backslash-marked components are critical to safety.
Replace only with same components as specified.

Ref. No.	Parts No.	Description
FUSE BOARD		
	$\begin{aligned} & \mathbf{1 - 5 3 3 - 1 6 2 - 0 0} \\ & 1-613-627-11 \end{aligned}$	HOLDER, FUSE PC BOARD, FUSE
10	M	CERAMIC 0.0047 20\% 400V
F401	1-532-612-00	TIME-LAG 160 mA
LED BOARD		
D1	8-719-908-47	SLP171D
POWER BOARD		
	A-8050-103-A	MOUNTED CB, POWER (75B) (WITH + 5V. 12V BOARD)
	A-8050-102-A	MOUNTED CB, POWER (55P/75P) (WITH +5V. 12V BOARD)
	1-464-383-11	MODULATOR, RF (75B)
	1-464-384-11	MODULATOR, RF (55P/75P)
C1	1-125-375-11	ELECT(BLOCK) 10000 20\% 16V
C2	1-125-376-11	ELECT(BLOCK) 3300 20\% 25V
C3	1-123-362-00	ELECT 330 20\% 50V
C4	1-123-332-00	ELECT 47 20\% 25V
C5	1-136-171-00	FILM 0.33 5\% 50V
C8	1-123-332-00	ELECT 47 20\% 25V
CN1	1-562-121-00	6P
CN2	1-560-200-00	2P
CN3	1-562-327-00	3P
CN4	1-562-327-00	3P
CN5	1-564-675-11	8P
CN6	1-562-250-00	5 P
NOTE:		
1.	The shaded and safety. Replace only with	marked components are critical to me components as specified.

Ref. No.	Parts No.	Description
D1	8-719-200-02	10 E 2
D2	8-719-200-02	10E2
D3	8-719-200-02	10E2
D4	8-719-200-02	10 E 2
D6	8-719-300-57	RB402
IC3	8-759-700-69	NJM79L12A
L1	1-408-413-00	MICRO INDUCTOR 22
12	1-543-184-00	BEAD, FERRITE
R1	1-247-837-00	CARBON 1.8K 5\% 1/6W
R2	1-247-837-00	CARBON 1.8K 5\% 1/6W
R3	1-247-831-00	CARBON 1K 5\% 1/6W

5 V BOARD

$$
\text { 1-613-624-11 PC BOARD. }+5 V
$$

C6	$1-123-332-00$	ELECT	47	20%	$25 V$
C10	$1-136-171-00$	FILM 0.33	5%	50 V	

IC1 8-749-930-52 SI-3052V

12V BOARD

1-613-625-11 PC BOARD, +12V

C7	1-123-332-00	ELECT	47	20%	$25 V$

| C1 | $1-136-171-00$ | FILM | 0.33 | 5% | $50 V$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

IC2 8-749-931-22 SI-3122V

Ref. No.	Parts No.	Description	Ref. No. Parts No.	Description
KEYBOARD (HB-55P)			FRAME (HB-55P/75P/75 B)	
	1-464-382-11	KEYBOARD UNIT (HB-55P)	$\begin{array}{ll} \triangle C N 401 & 1-534-817-\mathrm{XX}_{1} \\ & 1-551-884-00 \end{array}$	CORD, POWER, FULO PLUG (55P/75P) CORD, POWER (75B)
D1~D3	8-719-815-55	1 S 1555		
D4	9-983-904-01	LNO1201C		
S1~S9	9-983-791-01	KEY BOARD	\bigcirc S401 1-553-318-00	POWER
S10	9-984-704-01	KEY BOARD (RESET)		
S11~S53	9-983-791-01	KEY BOARD		
S54	9-984-704-01	KEY BOARD (SHIFT)	¢T401 1-447-939-11^	POWER
S55 ~S65	9-983-791-01	KEY BOARD		
S66	9-984-704-01	KEY BOARD (SHIFT)		
S67	9-983-791-01	KEY BOARD		
S68, 569	9-984-704-01	KEY BOARD (SPACE, CODE)		
S70~S74	9-983-791-01	KEY BOARD		

KEYBOARD (HB-75P/75B)

1-464-381-11 KEYBOARD UNIT (HB-75P/75B

D1 ~D3	$8-719-815 \cdot 55$	1S1555
S1~S10	1-552-539-11	KEY BOARD (1)
S11~S65	$9-985-263-01$	KEY BOARD (2)
S66	$9-984-340-01$	KEY BOARD (3) WITH LED
S67~S71	$9-985-263-01$	KEY BOARD (2)
S72~S75	$1-552-539-11$	KEY BOARD (1)

NOTE:

> 1. The shaded and \triangle-marked components are critical to: safety. Replace only with same components as specified.
2. Parts printed in Bold-Face type are normally stocked for replacement purposes. The remaining parts shown in this manual are not normally required for routine service work. Orders for parts not shown in Bold-Face type will be processed, but allow for additional delivery time.

NOTE:

1. The shaded and 1 -marked components are critical to safety. Replace only with same components as specified
2. Parts printed in Bold-Face type are normally stocked fo replacement purposes. The remaining parts shown in this manual are not normally required for routine service work Orders for parts not shown in Bold-Face type will be processed, but allow for additional delivery time.
